/* Copyright 2016-2019 Arisotura This file is part of melonDS. melonDS is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. melonDS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with melonDS. If not, see http://www.gnu.org/licenses/. */ #include #include "NDS.h" #include "DSi.h" #include "DMA.h" #include "GPU.h" // DMA TIMINGS // // sequential timing: // * 1 cycle per read or write // * in 32bit mode, accessing a 16bit bus (mainRAM, palette, VRAM) incurs 1 cycle of penalty // * in 32bit mode, transferring from mainRAM to another bank is 1 cycle faster // * if source and destination are the same memory bank, there is a 1 cycle penalty // * transferring from mainRAM to mainRAM is a trainwreck (all accesses are made nonsequential) // // nonsequential timing: // * nonseq penalty is applied to the first read and write // * I also figure it gets nonseq penalty again when resuming, after having been interrupted by // another DMA (TODO: check) // * applied to all accesses for mainRAM->mainRAM, resulting in timings of 16-18 cycles per unit // // TODO: GBA slot // TODO: re-add initial NS delay // TODO: timings are nonseq when address is fixed/decrementing DMA::DMA(u32 cpu, u32 num) { CPU = cpu; Num = num; if (cpu == 0) CountMask = 0x001FFFFF; else CountMask = (num==3 ? 0x0000FFFF : 0x00003FFF); Reset(); } DMA::~DMA() { } void DMA::Reset() { SrcAddr = 0; DstAddr = 0; Cnt = 0; StartMode = 0; CurSrcAddr = 0; CurDstAddr = 0; RemCount = 0; IterCount = 0; SrcAddrInc = 0; DstAddrInc = 0; Running = false; InProgress = false; } void DMA::DoSavestate(Savestate* file) { char magic[5] = "DMAx"; magic[3] = '0' + Num + (CPU*4); file->Section(magic); file->Var32(&SrcAddr); file->Var32(&DstAddr); file->Var32(&Cnt); file->Var32(&StartMode); file->Var32(&CurSrcAddr); file->Var32(&CurDstAddr); file->Var32(&RemCount); file->Var32(&IterCount); file->Var32(&SrcAddrInc); file->Var32(&DstAddrInc); file->Var32(&Running); file->Var32((u32*)&InProgress); file->Var32((u32*)&IsGXFIFODMA); } void DMA::WriteCnt(u32 val) { u32 oldcnt = Cnt; Cnt = val; if ((!(oldcnt & 0x80000000)) && (val & 0x80000000)) { CurSrcAddr = SrcAddr; CurDstAddr = DstAddr; switch (Cnt & 0x00600000) { case 0x00000000: DstAddrInc = 1; break; case 0x00200000: DstAddrInc = -1; break; case 0x00400000: DstAddrInc = 0; break; case 0x00600000: DstAddrInc = 1; break; } switch (Cnt & 0x01800000) { case 0x00000000: SrcAddrInc = 1; break; case 0x00800000: SrcAddrInc = -1; break; case 0x01000000: SrcAddrInc = 0; break; case 0x01800000: SrcAddrInc = 1; printf("BAD DMA SRC INC MODE 3\n"); break; } if (CPU == 0) StartMode = (Cnt >> 27) & 0x7; else StartMode = ((Cnt >> 28) & 0x3) | 0x10; if ((StartMode & 0x7) == 0) Start(); else if (StartMode == 0x07) GPU3D::CheckFIFODMA(); if (StartMode==0x06 || StartMode==0x13) printf("UNIMPLEMENTED ARM%d DMA%d START MODE %02X, %08X->%08X\n", CPU?7:9, Num, StartMode, SrcAddr, DstAddr); } } void DMA::Start() { if (Running) return; if (!InProgress) { u32 countmask; if (CPU == 0) countmask = 0x001FFFFF; else countmask = (Num==3 ? 0x0000FFFF : 0x00003FFF); RemCount = Cnt & countmask; if (!RemCount) RemCount = countmask+1; } if (StartMode == 0x07 && RemCount > 112) IterCount = 112; else IterCount = RemCount; if ((Cnt & 0x00600000) == 0x00600000) CurDstAddr = DstAddr; //printf("ARM%d DMA%d %08X %02X %08X->%08X %d bytes %dbit\n", CPU?7:9, Num, Cnt, StartMode, CurSrcAddr, CurDstAddr, RemCount*((Cnt&0x04000000)?4:2), (Cnt&0x04000000)?32:16); IsGXFIFODMA = (CPU == 0 && (CurSrcAddr>>24) == 0x02 && CurDstAddr == 0x04000400 && DstAddrInc == 0); // TODO eventually: not stop if we're running code in ITCM if (NDS::DMAsRunning(CPU)) Running = 1; else Running = 2; InProgress = true; NDS::StopCPU(CPU, 1<= NDS::ARM9Target) return; Executing = true; // add NS penalty for first accesses in burst bool burststart = (Running == 2); Running = 1; s32 unitcycles; //s32 lastcycles = cycles; if (!(Cnt & (1<<26))) { if ((CurSrcAddr >> 24) == 0x02 && (CurDstAddr >> 24) == 0x02) { unitcycles = NDS::ARM9MemTimings[CurSrcAddr >> 14][0] + NDS::ARM9MemTimings[CurDstAddr >> 14][0]; } else { unitcycles = NDS::ARM9MemTimings[CurSrcAddr >> 14][1] + NDS::ARM9MemTimings[CurDstAddr >> 14][1]; if ((CurSrcAddr >> 24) == (CurDstAddr >> 24)) unitcycles++; /*if (burststart) { cycles -= 2; cycles -= (NDS::ARM9MemTimings[CurSrcAddr >> 14][0] + NDS::ARM9MemTimings[CurDstAddr >> 14][0]); cycles += unitcycles; }*/ } while (IterCount > 0 && !Stall) { NDS::ARM9Timestamp += (unitcycles << NDS::ARM9ClockShift); //NDS::ARM9Write16(CurDstAddr, NDS::ARM9Read16(CurSrcAddr)); DSi::ARM9Write16(CurDstAddr, DSi::ARM9Read16(CurSrcAddr)); CurSrcAddr += SrcAddrInc<<1; CurDstAddr += DstAddrInc<<1; IterCount--; RemCount--; if (NDS::ARM9Timestamp >= NDS::ARM9Target) break; } } else { if ((CurSrcAddr >> 24) == 0x02 && (CurDstAddr >> 24) == 0x02) { unitcycles = NDS::ARM9MemTimings[CurSrcAddr >> 14][2] + NDS::ARM9MemTimings[CurDstAddr >> 14][2]; } else { unitcycles = NDS::ARM9MemTimings[CurSrcAddr >> 14][3] + NDS::ARM9MemTimings[CurDstAddr >> 14][3]; if ((CurSrcAddr >> 24) == (CurDstAddr >> 24)) unitcycles++; else if ((CurSrcAddr >> 24) == 0x02) unitcycles--; /*if (burststart) { cycles -= 2; cycles -= (NDS::ARM9MemTimings[CurSrcAddr >> 14][2] + NDS::ARM9MemTimings[CurDstAddr >> 14][2]); cycles += unitcycles; }*/ } while (IterCount > 0 && !Stall) { NDS::ARM9Timestamp += (unitcycles << NDS::ARM9ClockShift); //NDS::ARM9Write32(CurDstAddr, NDS::ARM9Read32(CurSrcAddr)); DSi::ARM9Write32(CurDstAddr, DSi::ARM9Read32(CurSrcAddr)); CurSrcAddr += SrcAddrInc<<2; CurDstAddr += DstAddrInc<<2; IterCount--; RemCount--; if (NDS::ARM9Timestamp >= NDS::ARM9Target) break; } } Executing = false; Stall = false; if (RemCount) { if (IterCount == 0) { Running = 0; NDS::ResumeCPU(0, 1<= NDS::ARM7Target) return; Executing = true; // add NS penalty for first accesses in burst bool burststart = (Running == 2); Running = 1; s32 unitcycles; //s32 lastcycles = cycles; if (!(Cnt & (1<<26))) { if ((CurSrcAddr >> 24) == 0x02 && (CurDstAddr >> 24) == 0x02) { unitcycles = NDS::ARM7MemTimings[CurSrcAddr >> 15][0] + NDS::ARM7MemTimings[CurDstAddr >> 15][0]; } else { unitcycles = NDS::ARM7MemTimings[CurSrcAddr >> 15][1] + NDS::ARM7MemTimings[CurDstAddr >> 15][1]; if ((CurSrcAddr >> 23) == (CurDstAddr >> 23)) unitcycles++; /*if (burststart) { cycles -= 2; cycles -= (NDS::ARM7MemTimings[CurSrcAddr >> 15][0] + NDS::ARM7MemTimings[CurDstAddr >> 15][0]); cycles += unitcycles; }*/ } while (IterCount > 0 && !Stall) { NDS::ARM7Timestamp += unitcycles; //NDS::ARM7Write16(CurDstAddr, NDS::ARM7Read16(CurSrcAddr)); DSi::ARM7Write16(CurDstAddr, DSi::ARM7Read16(CurSrcAddr)); CurSrcAddr += SrcAddrInc<<1; CurDstAddr += DstAddrInc<<1; IterCount--; RemCount--; if (NDS::ARM7Timestamp >= NDS::ARM7Target) break; } } else { if ((CurSrcAddr >> 24) == 0x02 && (CurDstAddr >> 24) == 0x02) { unitcycles = NDS::ARM7MemTimings[CurSrcAddr >> 15][2] + NDS::ARM7MemTimings[CurDstAddr >> 15][2]; } else { unitcycles = NDS::ARM7MemTimings[CurSrcAddr >> 15][3] + NDS::ARM7MemTimings[CurDstAddr >> 15][3]; if ((CurSrcAddr >> 23) == (CurDstAddr >> 23)) unitcycles++; else if ((CurSrcAddr >> 24) == 0x02) unitcycles--; /*if (burststart) { cycles -= 2; cycles -= (NDS::ARM7MemTimings[CurSrcAddr >> 15][2] + NDS::ARM7MemTimings[CurDstAddr >> 15][2]); cycles += unitcycles; }*/ } while (IterCount > 0 && !Stall) { NDS::ARM7Timestamp += unitcycles; //NDS::ARM7Write32(CurDstAddr, NDS::ARM7Read32(CurSrcAddr)); DSi::ARM7Write32(CurDstAddr, DSi::ARM7Read32(CurSrcAddr)); CurSrcAddr += SrcAddrInc<<2; CurDstAddr += DstAddrInc<<2; IterCount--; RemCount--; if (NDS::ARM7Timestamp >= NDS::ARM7Target) break; } } Executing = false; Stall = false; if (RemCount) { if (IterCount == 0) { Running = 0; NDS::ResumeCPU(1, 1<