#include "ARMJIT_Compiler.h" using namespace Gen; namespace ARMJIT { void Compiler::Comp_JumpTo(u32 addr, bool forceNonConstantCycles) { // we can simplify constant branches by a lot // it's not completely safe to assume stuff like, which instructions to preload // we'll see how it works out u32 newPC; u32 nextInstr[2]; u32 cycles = 0; bool setupRegion = false; if (addr & 0x1 && !Thumb) { CPSRDirty = true; OR(32, R(RCPSR), Imm8(0x20)); } else if (!(addr & 0x1) && Thumb) { CPSRDirty = true; AND(32, R(RCPSR), Imm32(~0x20)); } if (Num == 0) { ARMv5* cpu9 = (ARMv5*)CurCPU; u32 oldregion = R15 >> 24; u32 newregion = addr >> 24; u32 regionCodeCycles = cpu9->MemTimings[addr >> 12][0]; cpu9->RegionCodeCycles = regionCodeCycles; MOV(32, MDisp(RCPU, offsetof(ARMv5, RegionCodeCycles)), Imm32(regionCodeCycles)); setupRegion = newregion != oldregion; if (setupRegion) cpu9->SetupCodeMem(addr); if (addr & 0x1) { addr &= ~0x1; newPC = addr+2; // two-opcodes-at-once fetch // doesn't matter if we put garbage in the MSbs there if (addr & 0x2) { nextInstr[0] = cpu9->CodeRead32(addr-2, true) >> 16; cycles += CurCPU->CodeCycles; nextInstr[1] = cpu9->CodeRead32(addr+2, false); cycles += CurCPU->CodeCycles; } else { nextInstr[0] = cpu9->CodeRead32(addr, true); nextInstr[1] = nextInstr[0] >> 16; cycles += CurCPU->CodeCycles; } } else { addr &= ~0x3; newPC = addr+4; nextInstr[0] = cpu9->CodeRead32(addr, true); cycles += cpu9->CodeCycles; nextInstr[1] = cpu9->CodeRead32(addr+4, false); cycles += cpu9->CodeCycles; } } else { ARMv4* cpu7 = (ARMv4*)CurCPU; u32 codeRegion = addr >> 24; u32 codeCycles = addr >> 15; // cheato cpu7->CodeRegion = codeRegion; cpu7->CodeCycles = codeCycles; MOV(32, MDisp(RCPU, offsetof(ARM, CodeRegion)), Imm32(codeRegion)); MOV(32, MDisp(RCPU, offsetof(ARM, CodeRegion)), Imm32(codeCycles)); if (addr & 0x1) { addr &= ~0x1; newPC = addr+2; nextInstr[0] = ((ARMv4*)CurCPU)->CodeRead16(addr); nextInstr[1] = ((ARMv4*)CurCPU)->CodeRead16(addr+2); cycles += NDS::ARM7MemTimings[codeCycles][0] + NDS::ARM7MemTimings[codeCycles][1]; } else { addr &= ~0x3; newPC = addr+4; nextInstr[0] = cpu7->CodeRead32(addr); nextInstr[1] = cpu7->CodeRead32(addr+4); cycles += NDS::ARM7MemTimings[codeCycles][2] + NDS::ARM7MemTimings[codeCycles][3]; } } MOV(32, MDisp(RCPU, offsetof(ARM, R[15])), Imm32(newPC)); MOV(32, MDisp(RCPU, offsetof(ARM, NextInstr[0])), Imm32(nextInstr[0])); MOV(32, MDisp(RCPU, offsetof(ARM, NextInstr[1])), Imm32(nextInstr[1])); if ((Thumb || CurInstr.Cond() >= 0xE) && !forceNonConstantCycles) ConstantCycles += cycles; else ADD(32, MDisp(RCPU, offsetof(ARM, Cycles)), Imm8(cycles)); if (setupRegion) { MOV(64, R(ABI_PARAM1), R(RCPU)); MOV(32, R(ABI_PARAM2), Imm32(newPC)); CALL((void*)&ARMv5::SetupCodeMem); } } void Compiler::Comp_JumpTo(Gen::X64Reg addr, bool restoreCPSR) { BitSet16 hiRegsLoaded(RegCache.DirtyRegs & 0xFF00); bool previouslyDirty = CPSRDirty; SaveCPSR(); if (restoreCPSR) { if (Thumb || CurInstr.Cond() >= 0xE) RegCache.Flush(); else { // the ugly way... // we only save them, to load and save them again for (int reg : hiRegsLoaded) SaveReg(reg, RegCache.Mapping[reg]); } } MOV(64, R(ABI_PARAM1), R(RCPU)); MOV(32, R(ABI_PARAM2), R(addr)); if (!restoreCPSR) XOR(32, R(ABI_PARAM3), R(ABI_PARAM3)); else MOV(32, R(ABI_PARAM3), Imm32(restoreCPSR)); if (Num == 0) CALL((void*)&ARMv5::JumpTo); else CALL((void*)&ARMv4::JumpTo); if (!Thumb && restoreCPSR && CurInstr.Cond() < 0xE) { for (int reg : hiRegsLoaded) LoadReg(reg, RegCache.Mapping[reg]); } if (previouslyDirty) LoadCPSR(); CPSRDirty = previouslyDirty; } void Compiler::A_Comp_BranchImm() { int op = (CurInstr.Instr >> 24) & 1; s32 offset = (s32)(CurInstr.Instr << 8) >> 6; u32 target = R15 + offset; bool link = op; if (CurInstr.Cond() == 0xF) // BLX_imm { target += (op << 1) + 1; link = true; } if (link) MOV(32, MapReg(14), Imm32(R15 - 4)); Comp_JumpTo(target); } void Compiler::A_Comp_BranchXchangeReg() { OpArg rn = MapReg(CurInstr.A_Reg(0)); if ((CurInstr.Instr & 0xF0) == 0x30) // BLX_reg MOV(32, MapReg(14), Imm32(R15 - 4)); Comp_JumpTo(rn.GetSimpleReg()); } void Compiler::T_Comp_BCOND() { u32 cond = (CurInstr.Instr >> 8) & 0xF; FixupBranch skipExecute = CheckCondition(cond); s32 offset = (s32)(CurInstr.Instr << 24) >> 23; Comp_JumpTo(R15 + offset + 1, true); FixupBranch skipFailed = J(); SetJumpTarget(skipExecute); Comp_AddCycles_C(true); SetJumpTarget(skipFailed); } void Compiler::T_Comp_B() { s32 offset = (s32)((CurInstr.Instr & 0x7FF) << 21) >> 20; Comp_JumpTo(R15 + offset + 1); } void Compiler::T_Comp_BranchXchangeReg() { bool link = CurInstr.Instr & (1 << 7); if (link && Num == 1) { printf("BLX unsupported on ARM7!!!\n"); return; } OpArg rn = MapReg(CurInstr.A_Reg(3)); if (link) MOV(32, MapReg(14), Imm32(R15 - 1)); Comp_JumpTo(rn.GetSimpleReg()); } void Compiler::T_Comp_BL_LONG_1() { s32 offset = (s32)((CurInstr.Instr & 0x7FF) << 21) >> 9; MOV(32, MapReg(14), Imm32(R15 + offset)); Comp_AddCycles_C(); } void Compiler::T_Comp_BL_LONG_2() { OpArg lr = MapReg(14); s32 offset = (CurInstr.Instr & 0x7FF) << 1; LEA(32, RSCRATCH, MDisp(lr.GetSimpleReg(), offset)); MOV(32, lr, Imm32((R15 - 2) | 1)); if (Num == 1 || CurInstr.Instr & (1 << 12)) OR(32, R(RSCRATCH), Imm8(1)); Comp_JumpTo(RSCRATCH); } void Compiler::T_Comp_BL_Merged(FetchedInstr part1) { assert(part1.Info.Kind == ARMInstrInfo::tk_BL_LONG_1); Comp_AddCycles_C(); u32 target = (R15 - 2) + ((s32)((part1.Instr & 0x7FF) << 21) >> 9); target += (CurInstr.Instr & 0x7FF) << 1; if (Num == 1 || CurInstr.Instr & (1 << 12)) target |= 1; MOV(32, MapReg(14), Imm32((R15 - 2) | 1)); Comp_JumpTo(target); } }