/* Copyright 2016-2023 melonDS team This file is part of melonDS. melonDS is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. melonDS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with melonDS. If not, see http://www.gnu.org/licenses/. */ #include #include "ARM.h" namespace ARMInterpreter { inline bool CarryAdd(u32 a, u32 b) { return (0xFFFFFFFF-a) < b; } inline bool CarrySub(u32 a, u32 b) { return a >= b; } inline bool OverflowAdd(u32 a, u32 b) { u32 res = a + b; return (!((a ^ b) & 0x80000000)) && ((a ^ res) & 0x80000000); } inline bool OverflowSub(u32 a, u32 b) { u32 res = a - b; return ((a ^ b) & 0x80000000) && ((a ^ res) & 0x80000000); } inline bool OverflowAdc(u32 a, u32 b, u32 carry) { s64 fullResult = (s64)(s32)a + (s32)b + carry; u32 res = a + b + carry; return (s32)res != fullResult; } inline bool OverflowSbc(u32 a, u32 b, u32 carry) { s64 fullResult = (s64)(s32)a - (s32)b - carry; u32 res = a - b - carry; return (s32)res != fullResult; } #define LSL_IMM(x, s) \ x <<= s; #define LSR_IMM(x, s) \ if (s == 0) x = 0; \ else x >>= s; #define ASR_IMM(x, s) \ if (s == 0) x = ((s32)x) >> 31; \ else x = ((s32)x) >> s; #define ROR_IMM(x, s) \ if (s == 0) \ { \ x = (x >> 1) | ((cpu->CPSR & 0x20000000) << 2); \ } \ else \ { \ x = ROR(x, s); \ } #define LSL_IMM_S(x, s) \ if (s > 0) \ { \ cpu->SetC(x & (1<<(32-s))); \ x <<= s; \ } #define LSR_IMM_S(x, s) \ if (s == 0) { \ cpu->SetC(x & (1<<31)); \ x = 0; \ } else { \ cpu->SetC(x & (1<<(s-1))); \ x >>= s; \ } #define ASR_IMM_S(x, s) \ if (s == 0) { \ cpu->SetC(x & (1<<31)); \ x = ((s32)x) >> 31; \ } else { \ cpu->SetC(x & (1<<(s-1))); \ x = ((s32)x) >> s; \ } #define ROR_IMM_S(x, s) \ if (s == 0) \ { \ u32 newc = (x & 1); \ x = (x >> 1) | ((cpu->CPSR & 0x20000000) << 2); \ cpu->SetC(newc); \ } \ else \ { \ cpu->SetC(x & (1<<(s-1))); \ x = ROR(x, s); \ } #define LSL_REG(x, s) \ if (s > 31) x = 0; \ else x <<= s; #define LSR_REG(x, s) \ if (s > 31) x = 0; \ else x >>= s; #define ASR_REG(x, s) \ if (s > 31) x = ((s32)x) >> 31; \ else x = ((s32)x) >> s; #define ROR_REG(x, s) \ x = ROR(x, (s&0x1F)); #define LSL_REG_S(x, s) \ if (s > 31) { cpu->SetC((s>32) ? 0 : (x & (1<<0))); x = 0; } \ else if (s > 0) { cpu->SetC(x & (1<<(32-s))); x <<= s; } #define LSR_REG_S(x, s) \ if (s > 31) { cpu->SetC((s>32) ? 0 : (x & (1<<31))); x = 0; } \ else if (s > 0) { cpu->SetC(x & (1<<(s-1))); x >>= s; } #define ASR_REG_S(x, s) \ if (s > 31) { cpu->SetC(x & (1<<31)); x = ((s32)x) >> 31; } \ else if (s > 0) { cpu->SetC(x & (1<<(s-1))); x = ((s32)x) >> s; } #define ROR_REG_S(x, s) \ if (s > 0) cpu->SetC(x & (1<<(s-1))); \ x = ROR(x, (s&0x1F)); #define A_CALC_OP2_IMM \ u32 b = ROR(cpu->CurInstr&0xFF, (cpu->CurInstr>>7)&0x1E); #define A_CALC_OP2_IMM_S \ u32 b = ROR(cpu->CurInstr&0xFF, (cpu->CurInstr>>7)&0x1E); \ if ((cpu->CurInstr>>7)&0x1E) \ cpu->SetC(b & 0x80000000); #define A_CALC_OP2_REG_SHIFT_IMM(shiftop) \ u32 b = cpu->R[cpu->CurInstr&0xF]; \ u32 s = (cpu->CurInstr>>7)&0x1F; \ shiftop(b, s); #define A_CALC_OP2_REG_SHIFT_REG(shiftop) \ u32 b = cpu->R[cpu->CurInstr&0xF]; \ if ((cpu->CurInstr&0xF)==15) b += 4; \ shiftop(b, (cpu->R[(cpu->CurInstr>>8)&0xF] & 0xFF)); #define A_IMPLEMENT_ALU_OP(x,s) \ \ void A_##x##_IMM(ARM* cpu) \ { \ A_CALC_OP2_IMM \ A_##x(0) \ } \ void A_##x##_REG_LSL_IMM(ARM* cpu) \ { \ A_CALC_OP2_REG_SHIFT_IMM(LSL_IMM) \ A_##x(0) \ } \ void A_##x##_REG_LSR_IMM(ARM* cpu) \ { \ A_CALC_OP2_REG_SHIFT_IMM(LSR_IMM) \ A_##x(0) \ } \ void A_##x##_REG_ASR_IMM(ARM* cpu) \ { \ A_CALC_OP2_REG_SHIFT_IMM(ASR_IMM) \ A_##x(0) \ } \ void A_##x##_REG_ROR_IMM(ARM* cpu) \ { \ A_CALC_OP2_REG_SHIFT_IMM(ROR_IMM) \ A_##x(0) \ } \ void A_##x##_REG_LSL_REG(ARM* cpu) \ { \ A_CALC_OP2_REG_SHIFT_REG(LSL_REG) \ A_##x(1) \ } \ void A_##x##_REG_LSR_REG(ARM* cpu) \ { \ A_CALC_OP2_REG_SHIFT_REG(LSR_REG) \ A_##x(1) \ } \ void A_##x##_REG_ASR_REG(ARM* cpu) \ { \ A_CALC_OP2_REG_SHIFT_REG(ASR_REG) \ A_##x(1) \ } \ void A_##x##_REG_ROR_REG(ARM* cpu) \ { \ A_CALC_OP2_REG_SHIFT_REG(ROR_REG) \ A_##x(1) \ } \ void A_##x##_IMM_S(ARM* cpu) \ { \ A_CALC_OP2_IMM##s \ A_##x##_S(0) \ } \ void A_##x##_REG_LSL_IMM_S(ARM* cpu) \ { \ A_CALC_OP2_REG_SHIFT_IMM(LSL_IMM##s) \ A_##x##_S(0) \ } \ void A_##x##_REG_LSR_IMM_S(ARM* cpu) \ { \ A_CALC_OP2_REG_SHIFT_IMM(LSR_IMM##s) \ A_##x##_S(0) \ } \ void A_##x##_REG_ASR_IMM_S(ARM* cpu) \ { \ A_CALC_OP2_REG_SHIFT_IMM(ASR_IMM##s) \ A_##x##_S(0) \ } \ void A_##x##_REG_ROR_IMM_S(ARM* cpu) \ { \ A_CALC_OP2_REG_SHIFT_IMM(ROR_IMM##s) \ A_##x##_S(0) \ } \ void A_##x##_REG_LSL_REG_S(ARM* cpu) \ { \ A_CALC_OP2_REG_SHIFT_REG(LSL_REG##s) \ A_##x##_S(1) \ } \ void A_##x##_REG_LSR_REG_S(ARM* cpu) \ { \ A_CALC_OP2_REG_SHIFT_REG(LSR_REG##s) \ A_##x##_S(1) \ } \ void A_##x##_REG_ASR_REG_S(ARM* cpu) \ { \ A_CALC_OP2_REG_SHIFT_REG(ASR_REG##s) \ A_##x##_S(1) \ } \ void A_##x##_REG_ROR_REG_S(ARM* cpu) \ { \ A_CALC_OP2_REG_SHIFT_REG(ROR_REG##s) \ A_##x##_S(1) \ } #define A_IMPLEMENT_ALU_TEST(x,s) \ \ void A_##x##_IMM(ARM* cpu) \ { \ A_CALC_OP2_IMM##s \ A_##x(0) \ } \ void A_##x##_REG_LSL_IMM(ARM* cpu) \ { \ A_CALC_OP2_REG_SHIFT_IMM(LSL_IMM##s) \ A_##x(0) \ } \ void A_##x##_REG_LSR_IMM(ARM* cpu) \ { \ A_CALC_OP2_REG_SHIFT_IMM(LSR_IMM##s) \ A_##x(0) \ } \ void A_##x##_REG_ASR_IMM(ARM* cpu) \ { \ A_CALC_OP2_REG_SHIFT_IMM(ASR_IMM##s) \ A_##x(0) \ } \ void A_##x##_REG_ROR_IMM(ARM* cpu) \ { \ A_CALC_OP2_REG_SHIFT_IMM(ROR_IMM##s) \ A_##x(0) \ } \ void A_##x##_REG_LSL_REG(ARM* cpu) \ { \ A_CALC_OP2_REG_SHIFT_REG(LSL_REG##s) \ A_##x(1) \ } \ void A_##x##_REG_LSR_REG(ARM* cpu) \ { \ A_CALC_OP2_REG_SHIFT_REG(LSR_REG##s) \ A_##x(1) \ } \ void A_##x##_REG_ASR_REG(ARM* cpu) \ { \ A_CALC_OP2_REG_SHIFT_REG(ASR_REG##s) \ A_##x(1) \ } \ void A_##x##_REG_ROR_REG(ARM* cpu) \ { \ A_CALC_OP2_REG_SHIFT_REG(ROR_REG##s) \ A_##x(1) \ } #define A_AND(c) \ u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \ u32 res = a & b; \ if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \ if (((cpu->CurInstr>>12) & 0xF) == 15) \ { \ cpu->JumpTo(res & ~1); \ } \ else \ { \ cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \ } #define A_AND_S(c) \ u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \ u32 res = a & b; \ cpu->SetNZ(res & 0x80000000, \ !res); \ if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \ if (((cpu->CurInstr>>12) & 0xF) == 15) \ { \ cpu->JumpTo(res, true); \ } \ else \ { \ cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \ } A_IMPLEMENT_ALU_OP(AND,_S) #define A_EOR(c) \ u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \ u32 res = a ^ b; \ if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \ if (((cpu->CurInstr>>12) & 0xF) == 15) \ { \ cpu->JumpTo(res & ~1); \ } \ else \ { \ cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \ } #define A_EOR_S(c) \ u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \ u32 res = a ^ b; \ cpu->SetNZ(res & 0x80000000, \ !res); \ if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \ if (((cpu->CurInstr>>12) & 0xF) == 15) \ { \ cpu->JumpTo(res, true); \ } \ else \ { \ cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \ } A_IMPLEMENT_ALU_OP(EOR,_S) #define A_SUB(c) \ u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \ u32 res = a - b; \ if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \ if (((cpu->CurInstr>>12) & 0xF) == 15) \ { \ cpu->JumpTo(res & ~1); \ } \ else \ { \ cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \ } #define A_SUB_S(c) \ u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \ u32 res = a - b; \ cpu->SetNZCV(res & 0x80000000, \ !res, \ CarrySub(a, b), \ OverflowSub(a, b)); \ if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \ if (((cpu->CurInstr>>12) & 0xF) == 15) \ { \ cpu->JumpTo(res, true); \ } \ else \ { \ cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \ } A_IMPLEMENT_ALU_OP(SUB,) #define A_RSB(c) \ u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \ u32 res = b - a; \ if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \ if (((cpu->CurInstr>>12) & 0xF) == 15) \ { \ cpu->JumpTo(res & ~1); \ } \ else \ { \ cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \ } #define A_RSB_S(c) \ u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \ u32 res = b - a; \ cpu->SetNZCV(res & 0x80000000, \ !res, \ CarrySub(b, a), \ OverflowSub(b, a)); \ if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \ if (((cpu->CurInstr>>12) & 0xF) == 15) \ { \ cpu->JumpTo(res, true); \ } \ else \ { \ cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \ } A_IMPLEMENT_ALU_OP(RSB,) #define A_ADD(c) \ u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \ u32 res = a + b; \ if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \ if (((cpu->CurInstr>>12) & 0xF) == 15) \ { \ cpu->JumpTo(res & ~1); \ } \ else \ { \ cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \ } #define A_ADD_S(c) \ u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \ u32 res = a + b; \ cpu->SetNZCV(res & 0x80000000, \ !res, \ CarryAdd(a, b), \ OverflowAdd(a, b)); \ if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \ if (((cpu->CurInstr>>12) & 0xF) == 15) \ { \ cpu->JumpTo(res, true); \ } \ else \ { \ cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \ } A_IMPLEMENT_ALU_OP(ADD,) #define A_ADC(c) \ u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \ u32 res = a + b + (cpu->CPSR&0x20000000 ? 1:0); \ if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \ if (((cpu->CurInstr>>12) & 0xF) == 15) \ { \ cpu->JumpTo(res & ~1); \ } \ else \ { \ cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \ } #define A_ADC_S(c) \ u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \ u32 res_tmp = a + b; \ u32 carry = (cpu->CPSR&0x20000000 ? 1:0); \ u32 res = res_tmp + carry; \ cpu->SetNZCV(res & 0x80000000, \ !res, \ CarryAdd(a, b) | CarryAdd(res_tmp, carry), \ OverflowAdc(a, b, carry)); \ if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \ if (((cpu->CurInstr>>12) & 0xF) == 15) \ { \ cpu->JumpTo(res, true); \ } \ else \ { \ cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \ } A_IMPLEMENT_ALU_OP(ADC,) #define A_SBC(c) \ u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \ u32 res = a - b - (cpu->CPSR&0x20000000 ? 0:1); \ if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \ if (((cpu->CurInstr>>12) & 0xF) == 15) \ { \ cpu->JumpTo(res & ~1); \ } \ else \ { \ cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \ } #define A_SBC_S(c) \ u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \ u32 res_tmp = a - b; \ u32 carry = (cpu->CPSR&0x20000000 ? 0:1); \ u32 res = res_tmp - carry; \ cpu->SetNZCV(res & 0x80000000, \ !res, \ CarrySub(a, b) & CarrySub(res_tmp, carry), \ OverflowSbc(a, b, carry)); \ if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \ if (((cpu->CurInstr>>12) & 0xF) == 15) \ { \ cpu->JumpTo(res, true); \ } \ else \ { \ cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \ } A_IMPLEMENT_ALU_OP(SBC,) #define A_RSC(c) \ u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \ u32 res = b - a - (cpu->CPSR&0x20000000 ? 0:1); \ if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \ if (((cpu->CurInstr>>12) & 0xF) == 15) \ { \ cpu->JumpTo(res & ~1); \ } \ else \ { \ cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \ } #define A_RSC_S(c) \ u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \ u32 res_tmp = b - a; \ u32 carry = (cpu->CPSR&0x20000000 ? 0:1); \ u32 res = res_tmp - carry; \ cpu->SetNZCV(res & 0x80000000, \ !res, \ CarrySub(b, a) & CarrySub(res_tmp, carry), \ OverflowSbc(b, a, carry)); \ if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \ if (((cpu->CurInstr>>12) & 0xF) == 15) \ { \ cpu->JumpTo(res, true); \ } \ else \ { \ cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \ } A_IMPLEMENT_ALU_OP(RSC,) #define A_TST(c) \ u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \ u32 res = a & b; \ cpu->SetNZ(res & 0x80000000, \ !res); \ if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); A_IMPLEMENT_ALU_TEST(TST,_S) #define A_TEQ(c) \ u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \ u32 res = a ^ b; \ cpu->SetNZ(res & 0x80000000, \ !res); \ if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); A_IMPLEMENT_ALU_TEST(TEQ,_S) #define A_CMP(c) \ u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \ u32 res = a - b; \ cpu->SetNZCV(res & 0x80000000, \ !res, \ CarrySub(a, b), \ OverflowSub(a, b)); \ if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); A_IMPLEMENT_ALU_TEST(CMP,) #define A_CMN(c) \ u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \ u32 res = a + b; \ cpu->SetNZCV(res & 0x80000000, \ !res, \ CarryAdd(a, b), \ OverflowAdd(a, b)); \ if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); A_IMPLEMENT_ALU_TEST(CMN,) #define A_ORR(c) \ u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \ u32 res = a | b; \ if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \ if (((cpu->CurInstr>>12) & 0xF) == 15) \ { \ cpu->JumpTo(res & ~1); \ } \ else \ { \ cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \ } #define A_ORR_S(c) \ u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \ u32 res = a | b; \ cpu->SetNZ(res & 0x80000000, \ !res); \ if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \ if (((cpu->CurInstr>>12) & 0xF) == 15) \ { \ cpu->JumpTo(res, true); \ } \ else \ { \ cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \ } A_IMPLEMENT_ALU_OP(ORR,_S) #define A_MOV(c) \ if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \ if (((cpu->CurInstr>>12) & 0xF) == 15) \ { \ cpu->JumpTo(b & ~1); \ } \ else \ { \ cpu->R[(cpu->CurInstr>>12) & 0xF] = b; \ } #define A_MOV_S(c) \ cpu->SetNZ(b & 0x80000000, \ !b); \ if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \ if (((cpu->CurInstr>>12) & 0xF) == 15) \ { \ cpu->JumpTo(b, true); \ } \ else \ { \ cpu->R[(cpu->CurInstr>>12) & 0xF] = b; \ } A_IMPLEMENT_ALU_OP(MOV,_S) // debug hook void A_MOV_REG_LSL_IMM_DBG(ARM* cpu) { A_MOV_REG_LSL_IMM(cpu); // nocash-style debugging hook if ( cpu->CurInstr == 0xE1A0C00C && // mov r12, r12 (cpu->NextInstr[0] & 0xFF000000) == 0xEA000000 && // branch (cpu->NextInstr[1] & 0xFFFF) == 0x6464) { // GBATek says the two bytes after the 2nd ID are _reserved_ for flags // but since they serve no purpose ATTOW, we can skip them u32 addr = cpu->R[15] + 4; // Skip 2nd ID and flags // TODO: Pass flags to NocashPrint NDS::NocashPrint(cpu->Num, addr); } } #define A_BIC(c) \ u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \ u32 res = a & ~b; \ if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \ if (((cpu->CurInstr>>12) & 0xF) == 15) \ { \ cpu->JumpTo(res & ~1); \ } \ else \ { \ cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \ } #define A_BIC_S(c) \ u32 a = cpu->R[(cpu->CurInstr>>16) & 0xF]; \ u32 res = a & ~b; \ cpu->SetNZ(res & 0x80000000, \ !res); \ if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \ if (((cpu->CurInstr>>12) & 0xF) == 15) \ { \ cpu->JumpTo(res, true); \ } \ else \ { \ cpu->R[(cpu->CurInstr>>12) & 0xF] = res; \ } A_IMPLEMENT_ALU_OP(BIC,_S) #define A_MVN(c) \ b = ~b; \ if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \ if (((cpu->CurInstr>>12) & 0xF) == 15) \ { \ cpu->JumpTo(b & ~1); \ } \ else \ { \ cpu->R[(cpu->CurInstr>>12) & 0xF] = b; \ } #define A_MVN_S(c) \ b = ~b; \ cpu->SetNZ(b & 0x80000000, \ !b); \ if (c) cpu->AddCycles_CI(c); else cpu->AddCycles_C(); \ if (((cpu->CurInstr>>12) & 0xF) == 15) \ { \ cpu->JumpTo(b, true); \ } \ else \ { \ cpu->R[(cpu->CurInstr>>12) & 0xF] = b; \ } A_IMPLEMENT_ALU_OP(MVN,_S) void A_MUL(ARM* cpu) { u32 rm = cpu->R[cpu->CurInstr & 0xF]; u32 rs = cpu->R[(cpu->CurInstr >> 8) & 0xF]; u32 res = rm * rs; cpu->R[(cpu->CurInstr >> 16) & 0xF] = res; if (cpu->CurInstr & (1<<20)) { cpu->SetNZ(res & 0x80000000, !res); if (cpu->Num==1) cpu->SetC(0); } u32 cycles; if (cpu->Num == 0) cycles = (cpu->CurInstr & (1<<20)) ? 3 : 1; else { if ((rs & 0xFFFFFF00) == 0x00000000 || (rs & 0xFFFFFF00) == 0xFFFFFF00) cycles = 1; else if ((rs & 0xFFFF0000) == 0x00000000 || (rs & 0xFFFF0000) == 0xFFFF0000) cycles = 2; else if ((rs & 0xFF000000) == 0x00000000 || (rs & 0xFF000000) == 0xFF000000) cycles = 3; else cycles = 4; } cpu->AddCycles_CI(cycles); } void A_MLA(ARM* cpu) { u32 rm = cpu->R[cpu->CurInstr & 0xF]; u32 rs = cpu->R[(cpu->CurInstr >> 8) & 0xF]; u32 rn = cpu->R[(cpu->CurInstr >> 12) & 0xF]; u32 res = (rm * rs) + rn; cpu->R[(cpu->CurInstr >> 16) & 0xF] = res; if (cpu->CurInstr & (1<<20)) { cpu->SetNZ(res & 0x80000000, !res); if (cpu->Num==1) cpu->SetC(0); } u32 cycles; if (cpu->Num == 0) cycles = (cpu->CurInstr & (1<<20)) ? 3 : 1; else { if ((rs & 0xFFFFFF00) == 0x00000000 || (rs & 0xFFFFFF00) == 0xFFFFFF00) cycles = 2; else if ((rs & 0xFFFF0000) == 0x00000000 || (rs & 0xFFFF0000) == 0xFFFF0000) cycles = 3; else if ((rs & 0xFF000000) == 0x00000000 || (rs & 0xFF000000) == 0xFF000000) cycles = 4; else cycles = 5; } cpu->AddCycles_CI(cycles); } void A_UMULL(ARM* cpu) { u32 rm = cpu->R[cpu->CurInstr & 0xF]; u32 rs = cpu->R[(cpu->CurInstr >> 8) & 0xF]; u64 res = (u64)rm * (u64)rs; cpu->R[(cpu->CurInstr >> 12) & 0xF] = (u32)res; cpu->R[(cpu->CurInstr >> 16) & 0xF] = (u32)(res >> 32ULL); if (cpu->CurInstr & (1<<20)) { cpu->SetNZ((u32)(res >> 63ULL), !res); if (cpu->Num==1) cpu->SetC(0); } u32 cycles; if (cpu->Num == 0) cycles = (cpu->CurInstr & (1<<20)) ? 3 : 1; else { if ((rs & 0xFFFFFF00) == 0x00000000) cycles = 2; else if ((rs & 0xFFFF0000) == 0x00000000) cycles = 3; else if ((rs & 0xFF000000) == 0x00000000) cycles = 4; else cycles = 5; } cpu->AddCycles_CI(cycles); } void A_UMLAL(ARM* cpu) { u32 rm = cpu->R[cpu->CurInstr & 0xF]; u32 rs = cpu->R[(cpu->CurInstr >> 8) & 0xF]; u64 res = (u64)rm * (u64)rs; u64 rd = (u64)cpu->R[(cpu->CurInstr >> 12) & 0xF] | ((u64)cpu->R[(cpu->CurInstr >> 16) & 0xF] << 32ULL); res += rd; cpu->R[(cpu->CurInstr >> 12) & 0xF] = (u32)res; cpu->R[(cpu->CurInstr >> 16) & 0xF] = (u32)(res >> 32ULL); if (cpu->CurInstr & (1<<20)) { cpu->SetNZ((u32)(res >> 63ULL), !res); if (cpu->Num==1) cpu->SetC(0); } u32 cycles; if (cpu->Num == 0) cycles = (cpu->CurInstr & (1<<20)) ? 3 : 1; else { if ((rs & 0xFFFFFF00) == 0x00000000) cycles = 2; else if ((rs & 0xFFFF0000) == 0x00000000) cycles = 3; else if ((rs & 0xFF000000) == 0x00000000) cycles = 4; else cycles = 5; } cpu->AddCycles_CI(cycles); } void A_SMULL(ARM* cpu) { u32 rm = cpu->R[cpu->CurInstr & 0xF]; u32 rs = cpu->R[(cpu->CurInstr >> 8) & 0xF]; s64 res = (s64)(s32)rm * (s64)(s32)rs; cpu->R[(cpu->CurInstr >> 12) & 0xF] = (u32)res; cpu->R[(cpu->CurInstr >> 16) & 0xF] = (u32)(res >> 32ULL); if (cpu->CurInstr & (1<<20)) { cpu->SetNZ((u32)(res >> 63ULL), !res); if (cpu->Num==1) cpu->SetC(0); } u32 cycles; if (cpu->Num == 0) cycles = (cpu->CurInstr & (1<<20)) ? 3 : 1; else { if ((rs & 0xFFFFFF00) == 0x00000000 || (rs & 0xFFFFFF00) == 0xFFFFFF00) cycles = 2; else if ((rs & 0xFFFF0000) == 0x00000000 || (rs & 0xFFFF0000) == 0xFFFF0000) cycles = 3; else if ((rs & 0xFF000000) == 0x00000000 || (rs & 0xFF000000) == 0xFF000000) cycles = 4; else cycles = 5; } cpu->AddCycles_CI(cycles); } void A_SMLAL(ARM* cpu) { u32 rm = cpu->R[cpu->CurInstr & 0xF]; u32 rs = cpu->R[(cpu->CurInstr >> 8) & 0xF]; s64 res = (s64)(s32)rm * (s64)(s32)rs; s64 rd = (s64)((u64)cpu->R[(cpu->CurInstr >> 12) & 0xF] | ((u64)cpu->R[(cpu->CurInstr >> 16) & 0xF] << 32ULL)); res += rd; cpu->R[(cpu->CurInstr >> 12) & 0xF] = (u32)res; cpu->R[(cpu->CurInstr >> 16) & 0xF] = (u32)(res >> 32ULL); if (cpu->CurInstr & (1<<20)) { cpu->SetNZ((u32)(res >> 63ULL), !res); if (cpu->Num==1) cpu->SetC(0); } u32 cycles; if (cpu->Num == 0) cycles = (cpu->CurInstr & (1<<20)) ? 3 : 1; else { if ((rs & 0xFFFFFF00) == 0x00000000 || (rs & 0xFFFFFF00) == 0xFFFFFF00) cycles = 2; else if ((rs & 0xFFFF0000) == 0x00000000 || (rs & 0xFFFF0000) == 0xFFFF0000) cycles = 3; else if ((rs & 0xFF000000) == 0x00000000 || (rs & 0xFF000000) == 0xFF000000) cycles = 4; else cycles = 5; } cpu->AddCycles_CI(cycles); } void A_SMLAxy(ARM* cpu) { if (cpu->Num != 0) return; u32 rm = cpu->R[cpu->CurInstr & 0xF]; u32 rs = cpu->R[(cpu->CurInstr >> 8) & 0xF]; u32 rn = cpu->R[(cpu->CurInstr >> 12) & 0xF]; if (cpu->CurInstr & (1<<5)) rm >>= 16; else rm &= 0xFFFF; if (cpu->CurInstr & (1<<6)) rs >>= 16; else rs &= 0xFFFF; u32 res_mul = ((s16)rm * (s16)rs); u32 res = res_mul + rn; cpu->R[(cpu->CurInstr >> 16) & 0xF] = res; if (OverflowAdd(res_mul, rn)) cpu->CPSR |= 0x08000000; cpu->AddCycles_C(); // TODO: interlock?? } void A_SMLAWy(ARM* cpu) { if (cpu->Num != 0) return; u32 rm = cpu->R[cpu->CurInstr & 0xF]; u32 rs = cpu->R[(cpu->CurInstr >> 8) & 0xF]; u32 rn = cpu->R[(cpu->CurInstr >> 12) & 0xF]; if (cpu->CurInstr & (1<<6)) rs >>= 16; else rs &= 0xFFFF; u32 res_mul = ((s64)(s32)rm * (s16)rs) >> 16; u32 res = res_mul + rn; cpu->R[(cpu->CurInstr >> 16) & 0xF] = res; if (OverflowAdd(res_mul, rn)) cpu->CPSR |= 0x08000000; cpu->AddCycles_C(); // TODO: interlock?? } void A_SMULxy(ARM* cpu) { if (cpu->Num != 0) return; u32 rm = cpu->R[cpu->CurInstr & 0xF]; u32 rs = cpu->R[(cpu->CurInstr >> 8) & 0xF]; if (cpu->CurInstr & (1<<5)) rm >>= 16; else rm &= 0xFFFF; if (cpu->CurInstr & (1<<6)) rs >>= 16; else rs &= 0xFFFF; u32 res = ((s16)rm * (s16)rs); cpu->R[(cpu->CurInstr >> 16) & 0xF] = res; cpu->AddCycles_C(); // TODO: interlock?? } void A_SMULWy(ARM* cpu) { if (cpu->Num != 0) return; u32 rm = cpu->R[cpu->CurInstr & 0xF]; u32 rs = cpu->R[(cpu->CurInstr >> 8) & 0xF]; if (cpu->CurInstr & (1<<6)) rs >>= 16; else rs &= 0xFFFF; u32 res = ((s64)(s32)rm * (s16)rs) >> 16; cpu->R[(cpu->CurInstr >> 16) & 0xF] = res; cpu->AddCycles_C(); // TODO: interlock?? } void A_SMLALxy(ARM* cpu) { if (cpu->Num != 0) return; u32 rm = cpu->R[cpu->CurInstr & 0xF]; u32 rs = cpu->R[(cpu->CurInstr >> 8) & 0xF]; if (cpu->CurInstr & (1<<5)) rm >>= 16; else rm &= 0xFFFF; if (cpu->CurInstr & (1<<6)) rs >>= 16; else rs &= 0xFFFF; s64 res = (s64)(s16)rm * (s64)(s16)rs; s64 rd = (s64)((u64)cpu->R[(cpu->CurInstr >> 12) & 0xF] | ((u64)cpu->R[(cpu->CurInstr >> 16) & 0xF] << 32ULL)); res += rd; cpu->R[(cpu->CurInstr >> 12) & 0xF] = (u32)res; cpu->R[(cpu->CurInstr >> 16) & 0xF] = (u32)(res >> 32ULL); cpu->AddCycles_CI(1); // TODO: interlock?? } void A_CLZ(ARM* cpu) { if (cpu->Num != 0) return A_UNK(cpu); u32 val = cpu->R[cpu->CurInstr & 0xF]; u32 res = 0; while ((val & 0xFF000000) == 0) { res += 8; val <<= 8; val |= 0xFF; } while ((val & 0x80000000) == 0) { res++; val <<= 1; val |= 0x1; } cpu->R[(cpu->CurInstr >> 12) & 0xF] = res; cpu->AddCycles_C(); } void A_QADD(ARM* cpu) { if (cpu->Num != 0) return A_UNK(cpu); u32 rm = cpu->R[cpu->CurInstr & 0xF]; u32 rn = cpu->R[(cpu->CurInstr >> 16) & 0xF]; u32 res = rm + rn; if (OverflowAdd(rm, rn)) { res = (res & 0x80000000) ? 0x7FFFFFFF : 0x80000000; cpu->CPSR |= 0x08000000; } cpu->R[(cpu->CurInstr >> 12) & 0xF] = res; cpu->AddCycles_C(); // TODO: interlock?? } void A_QSUB(ARM* cpu) { if (cpu->Num != 0) return A_UNK(cpu); u32 rm = cpu->R[cpu->CurInstr & 0xF]; u32 rn = cpu->R[(cpu->CurInstr >> 16) & 0xF]; u32 res = rm - rn; if (OverflowSub(rm, rn)) { res = (res & 0x80000000) ? 0x7FFFFFFF : 0x80000000; cpu->CPSR |= 0x08000000; } cpu->R[(cpu->CurInstr >> 12) & 0xF] = res; cpu->AddCycles_C(); // TODO: interlock?? } void A_QDADD(ARM* cpu) { if (cpu->Num != 0) return A_UNK(cpu); u32 rm = cpu->R[cpu->CurInstr & 0xF]; u32 rn = cpu->R[(cpu->CurInstr >> 16) & 0xF]; if (OverflowAdd(rn, rn)) { rn = (rn & 0x80000000) ? 0x80000000 : 0x7FFFFFFF; cpu->CPSR |= 0x08000000; // CHECKME } else rn <<= 1; u32 res = rm + rn; if (OverflowAdd(rm, rn)) { res = (res & 0x80000000) ? 0x7FFFFFFF : 0x80000000; cpu->CPSR |= 0x08000000; } cpu->R[(cpu->CurInstr >> 12) & 0xF] = res; cpu->AddCycles_C(); // TODO: interlock?? } void A_QDSUB(ARM* cpu) { if (cpu->Num != 0) return A_UNK(cpu); u32 rm = cpu->R[cpu->CurInstr & 0xF]; u32 rn = cpu->R[(cpu->CurInstr >> 16) & 0xF]; if (OverflowAdd(rn, rn)) { rn = (rn & 0x80000000) ? 0x80000000 : 0x7FFFFFFF; cpu->CPSR |= 0x08000000; // CHECKME } else rn <<= 1; u32 res = rm - rn; if (OverflowSub(rm, rn)) { res = (res & 0x80000000) ? 0x7FFFFFFF : 0x80000000; cpu->CPSR |= 0x08000000; } cpu->R[(cpu->CurInstr >> 12) & 0xF] = res; cpu->AddCycles_C(); // TODO: interlock?? } // ---- THUMB ---------------------------------- void T_LSL_IMM(ARM* cpu) { u32 op = cpu->R[(cpu->CurInstr >> 3) & 0x7]; u32 s = (cpu->CurInstr >> 6) & 0x1F; LSL_IMM_S(op, s); cpu->R[cpu->CurInstr & 0x7] = op; cpu->SetNZ(op & 0x80000000, !op); cpu->AddCycles_C(); } void T_LSR_IMM(ARM* cpu) { u32 op = cpu->R[(cpu->CurInstr >> 3) & 0x7]; u32 s = (cpu->CurInstr >> 6) & 0x1F; LSR_IMM_S(op, s); cpu->R[cpu->CurInstr & 0x7] = op; cpu->SetNZ(op & 0x80000000, !op); cpu->AddCycles_C(); } void T_ASR_IMM(ARM* cpu) { u32 op = cpu->R[(cpu->CurInstr >> 3) & 0x7]; u32 s = (cpu->CurInstr >> 6) & 0x1F; ASR_IMM_S(op, s); cpu->R[cpu->CurInstr & 0x7] = op; cpu->SetNZ(op & 0x80000000, !op); cpu->AddCycles_C(); } void T_ADD_REG_(ARM* cpu) { u32 a = cpu->R[(cpu->CurInstr >> 3) & 0x7]; u32 b = cpu->R[(cpu->CurInstr >> 6) & 0x7]; u32 res = a + b; cpu->R[cpu->CurInstr & 0x7] = res; cpu->SetNZCV(res & 0x80000000, !res, CarryAdd(a, b), OverflowAdd(a, b)); cpu->AddCycles_C(); } void T_SUB_REG_(ARM* cpu) { u32 a = cpu->R[(cpu->CurInstr >> 3) & 0x7]; u32 b = cpu->R[(cpu->CurInstr >> 6) & 0x7]; u32 res = a - b; cpu->R[cpu->CurInstr & 0x7] = res; cpu->SetNZCV(res & 0x80000000, !res, CarrySub(a, b), OverflowSub(a, b)); cpu->AddCycles_C(); } void T_ADD_IMM_(ARM* cpu) { u32 a = cpu->R[(cpu->CurInstr >> 3) & 0x7]; u32 b = (cpu->CurInstr >> 6) & 0x7; u32 res = a + b; cpu->R[cpu->CurInstr & 0x7] = res; cpu->SetNZCV(res & 0x80000000, !res, CarryAdd(a, b), OverflowAdd(a, b)); cpu->AddCycles_C(); } void T_SUB_IMM_(ARM* cpu) { u32 a = cpu->R[(cpu->CurInstr >> 3) & 0x7]; u32 b = (cpu->CurInstr >> 6) & 0x7; u32 res = a - b; cpu->R[cpu->CurInstr & 0x7] = res; cpu->SetNZCV(res & 0x80000000, !res, CarrySub(a, b), OverflowSub(a, b)); cpu->AddCycles_C(); } void T_MOV_IMM(ARM* cpu) { u32 b = cpu->CurInstr & 0xFF; cpu->R[(cpu->CurInstr >> 8) & 0x7] = b; cpu->SetNZ(0, !b); cpu->AddCycles_C(); } void T_CMP_IMM(ARM* cpu) { u32 a = cpu->R[(cpu->CurInstr >> 8) & 0x7]; u32 b = cpu->CurInstr & 0xFF; u32 res = a - b; cpu->SetNZCV(res & 0x80000000, !res, CarrySub(a, b), OverflowSub(a, b)); cpu->AddCycles_C(); } void T_ADD_IMM(ARM* cpu) { u32 a = cpu->R[(cpu->CurInstr >> 8) & 0x7]; u32 b = cpu->CurInstr & 0xFF; u32 res = a + b; cpu->R[(cpu->CurInstr >> 8) & 0x7] = res; cpu->SetNZCV(res & 0x80000000, !res, CarryAdd(a, b), OverflowAdd(a, b)); cpu->AddCycles_C(); } void T_SUB_IMM(ARM* cpu) { u32 a = cpu->R[(cpu->CurInstr >> 8) & 0x7]; u32 b = cpu->CurInstr & 0xFF; u32 res = a - b; cpu->R[(cpu->CurInstr >> 8) & 0x7] = res; cpu->SetNZCV(res & 0x80000000, !res, CarrySub(a, b), OverflowSub(a, b)); cpu->AddCycles_C(); } void T_AND_REG(ARM* cpu) { u32 a = cpu->R[cpu->CurInstr & 0x7]; u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7]; u32 res = a & b; cpu->R[cpu->CurInstr & 0x7] = res; cpu->SetNZ(res & 0x80000000, !res); cpu->AddCycles_C(); } void T_EOR_REG(ARM* cpu) { u32 a = cpu->R[cpu->CurInstr & 0x7]; u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7]; u32 res = a ^ b; cpu->R[cpu->CurInstr & 0x7] = res; cpu->SetNZ(res & 0x80000000, !res); cpu->AddCycles_C(); } void T_LSL_REG(ARM* cpu) { u32 a = cpu->R[cpu->CurInstr & 0x7]; u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7] & 0xFF; LSL_REG_S(a, b); cpu->R[cpu->CurInstr & 0x7] = a; cpu->SetNZ(a & 0x80000000, !a); cpu->AddCycles_CI(1); } void T_LSR_REG(ARM* cpu) { u32 a = cpu->R[cpu->CurInstr & 0x7]; u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7] & 0xFF; LSR_REG_S(a, b); cpu->R[cpu->CurInstr & 0x7] = a; cpu->SetNZ(a & 0x80000000, !a); cpu->AddCycles_CI(1); } void T_ASR_REG(ARM* cpu) { u32 a = cpu->R[cpu->CurInstr & 0x7]; u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7] & 0xFF; ASR_REG_S(a, b); cpu->R[cpu->CurInstr & 0x7] = a; cpu->SetNZ(a & 0x80000000, !a); cpu->AddCycles_CI(1); } void T_ADC_REG(ARM* cpu) { u32 a = cpu->R[cpu->CurInstr & 0x7]; u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7]; u32 res_tmp = a + b; u32 carry = (cpu->CPSR&0x20000000 ? 1:0); u32 res = res_tmp + carry; cpu->R[cpu->CurInstr & 0x7] = res; cpu->SetNZCV(res & 0x80000000, !res, CarryAdd(a, b) | CarryAdd(res_tmp, carry), OverflowAdc(a, b, carry)); cpu->AddCycles_C(); } void T_SBC_REG(ARM* cpu) { u32 a = cpu->R[cpu->CurInstr & 0x7]; u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7]; u32 res_tmp = a - b; u32 carry = (cpu->CPSR&0x20000000 ? 0:1); u32 res = res_tmp - carry; cpu->R[cpu->CurInstr & 0x7] = res; cpu->SetNZCV(res & 0x80000000, !res, CarrySub(a, b) & CarrySub(res_tmp, carry), OverflowSbc(a, b, carry)); cpu->AddCycles_C(); } void T_ROR_REG(ARM* cpu) { u32 a = cpu->R[cpu->CurInstr & 0x7]; u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7] & 0xFF; ROR_REG_S(a, b); cpu->R[cpu->CurInstr & 0x7] = a; cpu->SetNZ(a & 0x80000000, !a); cpu->AddCycles_CI(1); } void T_TST_REG(ARM* cpu) { u32 a = cpu->R[cpu->CurInstr & 0x7]; u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7]; u32 res = a & b; cpu->SetNZ(res & 0x80000000, !res); cpu->AddCycles_C(); } void T_NEG_REG(ARM* cpu) { u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7]; u32 res = -b; cpu->R[cpu->CurInstr & 0x7] = res; cpu->SetNZCV(res & 0x80000000, !res, CarrySub(0, b), OverflowSub(0, b)); cpu->AddCycles_C(); } void T_CMP_REG(ARM* cpu) { u32 a = cpu->R[cpu->CurInstr & 0x7]; u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7]; u32 res = a - b; cpu->SetNZCV(res & 0x80000000, !res, CarrySub(a, b), OverflowSub(a, b)); cpu->AddCycles_C(); } void T_CMN_REG(ARM* cpu) { u32 a = cpu->R[cpu->CurInstr & 0x7]; u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7]; u32 res = a + b; cpu->SetNZCV(res & 0x80000000, !res, CarryAdd(a, b), OverflowAdd(a, b)); cpu->AddCycles_C(); } void T_ORR_REG(ARM* cpu) { u32 a = cpu->R[cpu->CurInstr & 0x7]; u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7]; u32 res = a | b; cpu->R[cpu->CurInstr & 0x7] = res; cpu->SetNZ(res & 0x80000000, !res); cpu->AddCycles_C(); } void T_MUL_REG(ARM* cpu) { u32 a = cpu->R[cpu->CurInstr & 0x7]; u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7]; u32 res = a * b; cpu->R[cpu->CurInstr & 0x7] = res; cpu->SetNZ(res & 0x80000000, !res); s32 cycles = 0; if (cpu->Num == 0) { cycles += 3; } else { cpu->SetC(0); // carry flag destroyed, they say. whatever that means... if (a & 0xFF000000) cycles += 4; else if (a & 0x00FF0000) cycles += 3; else if (a & 0x0000FF00) cycles += 2; else cycles += 1; } cpu->AddCycles_CI(cycles); } void T_BIC_REG(ARM* cpu) { u32 a = cpu->R[cpu->CurInstr & 0x7]; u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7]; u32 res = a & ~b; cpu->R[cpu->CurInstr & 0x7] = res; cpu->SetNZ(res & 0x80000000, !res); cpu->AddCycles_C(); } void T_MVN_REG(ARM* cpu) { u32 b = cpu->R[(cpu->CurInstr >> 3) & 0x7]; u32 res = ~b; cpu->R[cpu->CurInstr & 0x7] = res; cpu->SetNZ(res & 0x80000000, !res); cpu->AddCycles_C(); } // TODO: check those when MSBs and MSBd are cleared // GBAtek says it's not allowed, but it works atleast on the ARM9 void T_ADD_HIREG(ARM* cpu) { u32 rd = (cpu->CurInstr & 0x7) | ((cpu->CurInstr >> 4) & 0x8); u32 rs = (cpu->CurInstr >> 3) & 0xF; u32 a = cpu->R[rd]; u32 b = cpu->R[rs]; cpu->AddCycles_C(); if (rd == 15) { cpu->JumpTo((a + b) | 1); } else { cpu->R[rd] = a + b; } } void T_CMP_HIREG(ARM* cpu) { u32 rd = (cpu->CurInstr & 0x7) | ((cpu->CurInstr >> 4) & 0x8); u32 rs = (cpu->CurInstr >> 3) & 0xF; u32 a = cpu->R[rd]; u32 b = cpu->R[rs]; u32 res = a - b; cpu->SetNZCV(res & 0x80000000, !res, CarrySub(a, b), OverflowSub(a, b)); cpu->AddCycles_C(); } void T_MOV_HIREG(ARM* cpu) { u32 rd = (cpu->CurInstr & 0x7) | ((cpu->CurInstr >> 4) & 0x8); u32 rs = (cpu->CurInstr >> 3) & 0xF; cpu->AddCycles_C(); if (rd == 15) { cpu->JumpTo(cpu->R[rs] | 1); } else { cpu->R[rd] = cpu->R[rs]; } // nocash-style debugging hook if ((cpu->CurInstr & 0xFFFF) == 0x46E4 && // mov r12, r12 (cpu->NextInstr[0] & 0xF800) == 0xE000 && // branch (cpu->NextInstr[1] & 0xFFFF) == 0x6464) { // GBATek says the two bytes after the 2nd ID are _reserved_ for flags // but since they serve no purpose ATTOW, we can skip them u32 addr = cpu->R[15] + 4; // Skip 2nd ID and flags // TODO: Pass flags to NocashPrint NDS::NocashPrint(cpu->Num, addr); } } void T_ADD_PCREL(ARM* cpu) { u32 val = cpu->R[15] & ~2; val += ((cpu->CurInstr & 0xFF) << 2); cpu->R[(cpu->CurInstr >> 8) & 0x7] = val; cpu->AddCycles_C(); } void T_ADD_SPREL(ARM* cpu) { u32 val = cpu->R[13]; val += ((cpu->CurInstr & 0xFF) << 2); cpu->R[(cpu->CurInstr >> 8) & 0x7] = val; cpu->AddCycles_C(); } void T_ADD_SP(ARM* cpu) { u32 val = cpu->R[13]; if (cpu->CurInstr & (1<<7)) val -= ((cpu->CurInstr & 0x7F) << 2); else val += ((cpu->CurInstr & 0x7F) << 2); cpu->R[13] = val; cpu->AddCycles_C(); } }