/* Copyright 2016-2017 StapleButter This file is part of melonDS. melonDS is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. melonDS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with melonDS. If not, see http://www.gnu.org/licenses/. */ #include #include #include "NDS.h" #include "GPU.h" namespace GPU3D { namespace SoftRenderer { u32 ColorBuffer[256*192]; u32 DepthBuffer[256*192]; u32 AttrBuffer[256*192]; // attribute buffer: // bit0-5: polygon ID // bit8: fog enable bool Init() { return true; } void DeInit() { } void Reset() { memset(ColorBuffer, 0, 256*192 * 4); memset(DepthBuffer, 0, 256*192 * 4); memset(AttrBuffer, 0, 256*192 * 4); } void TextureLookup(u32 texparam, u32 texpal, s16 s, s16 t, u16* color, u8* alpha) { u32 vramaddr = (texparam & 0xFFFF) << 3; u32 width = 8 << ((texparam >> 20) & 0x7); u32 height = 8 << ((texparam >> 23) & 0x7); s >>= 4; t >>= 4; // texture wrapping // TODO: optimize this somehow if (texparam & (1<<16)) { if (texparam & (1<<18)) { if (s & width) s = (width-1) - (s & (width-1)); else s = (s & (width-1)); } else s &= width-1; } else { if (s < 0) s = 0; else if (s >= width) s = width-1; } if (texparam & (1<<17)) { if (texparam & (1<<19)) { if (t & height) t = (height-1) - (t & (height-1)); else t = (t & (height-1)); } else t &= height-1; } else { if (t < 0) t = 0; else if (t >= height) t = height-1; } u8 alpha0; if (texparam & (1<<29)) alpha0 = 0; else alpha0 = 31; switch ((texparam >> 26) & 0x7) { case 1: // A3I5 { vramaddr += ((t * width) + s); u8 pixel = GPU::ReadVRAM_Texture(vramaddr); texpal <<= 4; *color = GPU::ReadVRAM_TexPal(texpal + ((pixel&0x1F)<<1)); *alpha = ((pixel >> 3) & 0x1C) + (pixel >> 6); } break; case 2: // 4-color { vramaddr += (((t * width) + s) >> 2); u8 pixel = GPU::ReadVRAM_Texture(vramaddr); pixel >>= ((s & 0x3) << 1); pixel &= 0x3; texpal <<= 3; *color = GPU::ReadVRAM_TexPal(texpal + (pixel<<1)); *alpha = (pixel==0) ? alpha0 : 31; } break; case 3: // 16-color { vramaddr += (((t * width) + s) >> 1); u8 pixel = GPU::ReadVRAM_Texture(vramaddr); if (s & 0x1) pixel >>= 4; else pixel &= 0xF; texpal <<= 4; *color = GPU::ReadVRAM_TexPal(texpal + (pixel<<1)); *alpha = (pixel==0) ? alpha0 : 31; } break; case 4: // 256-color { vramaddr += ((t * width) + s); u8 pixel = GPU::ReadVRAM_Texture(vramaddr); texpal <<= 4; *color = GPU::ReadVRAM_TexPal(texpal + (pixel<<1)); *alpha = (pixel==0) ? alpha0 : 31; } break; case 5: // compressed { vramaddr += ((t & 0x3FC) * (width>>2)) + (s & 0x3FC); vramaddr += (t & 0x3); u32 slot1addr = 0x20000 + ((vramaddr & 0x1FFFC) >> 1); if (vramaddr >= 0x40000) slot1addr += 0x10000; u8 val = GPU::ReadVRAM_Texture(vramaddr); val >>= (2 * (s & 0x3)); u16 palinfo = GPU::ReadVRAM_Texture(slot1addr); u32 paloffset = (palinfo & 0x3FFF) << 2; texpal <<= 4; switch (val & 0x3) { case 0: *color = GPU::ReadVRAM_TexPal(texpal + paloffset); *alpha = 31; break; case 1: *color = GPU::ReadVRAM_TexPal(texpal + paloffset + 2); *alpha = 31; break; case 2: if ((palinfo >> 14) == 1) { u16 color0 = GPU::ReadVRAM_TexPal(texpal + paloffset); u16 color1 = GPU::ReadVRAM_TexPal(texpal + paloffset + 2); u32 r0 = color0 & 0x001F; u32 g0 = color0 & 0x03E0; u32 b0 = color0 & 0x7C00; u32 r1 = color1 & 0x001F; u32 g1 = color1 & 0x03E0; u32 b1 = color1 & 0x7C00; u32 r = (r0 + r1) >> 1; u32 g = ((g0 + g1) >> 1) & 0x03E0; u32 b = ((b0 + b1) >> 1) & 0x7C00; *color = r | g | b; } else if ((palinfo >> 14) == 3) { u16 color0 = GPU::ReadVRAM_TexPal(texpal + paloffset); u16 color1 = GPU::ReadVRAM_TexPal(texpal + paloffset + 2); u32 r0 = color0 & 0x001F; u32 g0 = color0 & 0x03E0; u32 b0 = color0 & 0x7C00; u32 r1 = color1 & 0x001F; u32 g1 = color1 & 0x03E0; u32 b1 = color1 & 0x7C00; u32 r = (r0*5 + r1*3) >> 3; u32 g = ((g0*5 + g1*3) >> 3) & 0x03E0; u32 b = ((b0*5 + b1*3) >> 3) & 0x7C00; *color = r | g | b; } else *color = GPU::ReadVRAM_TexPal(texpal + paloffset + 4); *alpha = 31; break; case 3: if ((palinfo >> 14) == 2) { *color = GPU::ReadVRAM_TexPal(texpal + paloffset + 6); *alpha = 31; } else if ((palinfo >> 14) == 3) { u16 color0 = GPU::ReadVRAM_TexPal(texpal + paloffset); u16 color1 = GPU::ReadVRAM_TexPal(texpal + paloffset + 2); u32 r0 = color0 & 0x001F; u32 g0 = color0 & 0x03E0; u32 b0 = color0 & 0x7C00; u32 r1 = color1 & 0x001F; u32 g1 = color1 & 0x03E0; u32 b1 = color1 & 0x7C00; u32 r = (r0*3 + r1*5) >> 3; u32 g = ((g0*3 + g1*5) >> 3) & 0x03E0; u32 b = ((b0*3 + b1*5) >> 3) & 0x7C00; *color = r | g | b; *alpha = 31; } else { *color = 0; *alpha = 0; } break; } } break; case 6: // A5I3 { vramaddr += ((t * width) + s); u8 pixel = GPU::ReadVRAM_Texture(vramaddr); texpal <<= 4; *color = GPU::ReadVRAM_TexPal(texpal + ((pixel&0x7)<<1)); *alpha = (pixel >> 3); } break; case 7: // direct color { vramaddr += (((t * width) + s) << 1); *color = GPU::ReadVRAM_Texture(vramaddr); *alpha = (*color & 0x8000) ? 31 : 0; } break; } } bool DepthTest(Polygon* polygon, s32 x, s32 y, s32 z) { u32 oldz = DepthBuffer[(256*y) + x]; if (polygon->Attr & (1<<14)) { s32 diff = oldz - z; if ((u32)(diff + 0x200) <= 0x400) return true; } else if (z < oldz) return true; return false; } u32 RenderPixel(Polygon* polygon, s32 x, s32 y, s32 z, u8 vr, u8 vg, u8 vb, s16 s, s16 t) { u32 attr = polygon->Attr; u8 r, g, b, a; u32 polyalpha = (polygon->Attr >> 16) & 0x1F; bool wireframe = (polyalpha == 0); if ((DispCnt & (1<<0)) && (((polygon->TexParam >> 26) & 0x7) != 0)) { u8 tr, tg, tb; u16 tcolor; u8 talpha; TextureLookup(polygon->TexParam, polygon->TexPalette, s, t, &tcolor, &talpha); tr = (tcolor << 1) & 0x3E; if (tr) tr++; tg = (tcolor >> 4) & 0x3E; if (tg) tg++; tb = (tcolor >> 9) & 0x3E; if (tb) tb++; // TODO: other blending modes r = ((tr+1) * (vr+1) - 1) >> 6; g = ((tg+1) * (vg+1) - 1) >> 6; b = ((tb+1) * (vb+1) - 1) >> 6; a = ((talpha+1) * (polyalpha+1) - 1) >> 5; } else { r = vr; g = vg; b = vb; a = polyalpha; } if (wireframe) a = 31; return r | (g << 8) | (b << 16) | (a << 24); } void RenderPolygon(Polygon* polygon) { int nverts = polygon->NumVertices; bool isline = false; int vtop = polygon->VTop, vbot = polygon->VBottom; s32 ytop = polygon->YTop, ybot = polygon->YBottom; s32 xtop = polygon->XTop, xbot = polygon->XBottom; if (ytop > 191) return; // draw, line per line u32 polyalpha = (polygon->Attr >> 16) & 0x1F; bool wireframe = (polyalpha == 0); int lcur = vtop, rcur = vtop; int lnext, rnext; s32 dxl, dxr; s32 lslope, rslope; bool l_xmajor, r_xmajor; if (ybot == ytop) { ybot++; isline = true; vtop = 0; vbot = 0; xtop = 256; xbot = 0; int i; i = 1; if (polygon->Vertices[i]->FinalPosition[0] < polygon->Vertices[vtop]->FinalPosition[0]) vtop = i; if (polygon->Vertices[i]->FinalPosition[0] > polygon->Vertices[vbot]->FinalPosition[0]) vbot = i; i = nverts - 1; if (polygon->Vertices[i]->FinalPosition[0] < polygon->Vertices[vtop]->FinalPosition[0]) vtop = i; if (polygon->Vertices[i]->FinalPosition[0] > polygon->Vertices[vbot]->FinalPosition[0]) vbot = i; lcur = vtop; lnext = vtop; rcur = vbot; rnext = vbot; lslope = 0; l_xmajor = false; rslope = 0; r_xmajor = false; } else { //while (polygon->Vertices[lnext]->FinalPosition[1] ) if (polygon->FacingView) { lnext = lcur + 1; if (lnext >= nverts) lnext = 0; rnext = rcur - 1; if (rnext < 0) rnext = nverts - 1; } else { lnext = lcur - 1; if (lnext < 0) lnext = nverts - 1; rnext = rcur + 1; if (rnext >= nverts) rnext = 0; } if (polygon->Vertices[lnext]->FinalPosition[1] == polygon->Vertices[lcur]->FinalPosition[1]) lslope = 0; else lslope = ((polygon->Vertices[lnext]->FinalPosition[0] - polygon->Vertices[lcur]->FinalPosition[0]) << 12) / (polygon->Vertices[lnext]->FinalPosition[1] - polygon->Vertices[lcur]->FinalPosition[1]); if (polygon->Vertices[rnext]->FinalPosition[1] == polygon->Vertices[rcur]->FinalPosition[1]) rslope = 0; else rslope = ((polygon->Vertices[rnext]->FinalPosition[0] - polygon->Vertices[rcur]->FinalPosition[0]) << 12) / (polygon->Vertices[rnext]->FinalPosition[1] - polygon->Vertices[rcur]->FinalPosition[1]); l_xmajor = (lslope < -0x1000) || (lslope > 0x1000); r_xmajor = (rslope < -0x1000) || (rslope > 0x1000); } if (l_xmajor) dxl = (lslope > 0) ? 0x800 : (-lslope-0x800)+0x1000; else if (lslope) dxl = (lslope > 0) ? 0 : 0x1000; else dxl = 0; if (r_xmajor) dxr = (rslope > 0) ? rslope-0x800 : 0x800+0x1000; else if (rslope) dxr = (rslope > 0) ? 0 : 0x1000; else dxr = 0x1000; if (ybot > 192) ybot = 192; for (s32 y = ytop; y < ybot; y++) { if (!isline) { if (y >= polygon->Vertices[lnext]->FinalPosition[1] && lcur != vbot) { while (y >= polygon->Vertices[lnext]->FinalPosition[1] && lcur != vbot) { lcur = lnext; if (polygon->FacingView) { lnext = lcur + 1; if (lnext >= nverts) lnext = 0; } else { lnext = lcur - 1; if (lnext < 0) lnext = nverts - 1; } } if (polygon->Vertices[lnext]->FinalPosition[1] == polygon->Vertices[lcur]->FinalPosition[1]) lslope = 0; else lslope = ((polygon->Vertices[lnext]->FinalPosition[0] - polygon->Vertices[lcur]->FinalPosition[0]) << 12) / (polygon->Vertices[lnext]->FinalPosition[1] - polygon->Vertices[lcur]->FinalPosition[1]); l_xmajor = (lslope < -0x1000) || (lslope > 0x1000); if (l_xmajor) dxl = (lslope > 0) ? 0x800 : (-lslope-0x800)+0x1000; else if (lslope) dxl = (lslope > 0) ? 0 : 0x1000; else dxl = 0; } if (y >= polygon->Vertices[rnext]->FinalPosition[1] && rcur != vbot) { while (y >= polygon->Vertices[rnext]->FinalPosition[1] && rcur != vbot) { rcur = rnext; if (polygon->FacingView) { rnext = rcur - 1; if (rnext < 0) rnext = nverts - 1; } else { rnext = rcur + 1; if (rnext >= nverts) rnext = 0; } } if (polygon->Vertices[rnext]->FinalPosition[1] == polygon->Vertices[rcur]->FinalPosition[1]) rslope = 0; else rslope = ((polygon->Vertices[rnext]->FinalPosition[0] - polygon->Vertices[rcur]->FinalPosition[0]) << 12) / (polygon->Vertices[rnext]->FinalPosition[1] - polygon->Vertices[rcur]->FinalPosition[1]); r_xmajor = (rslope < -0x1000) || (rslope > 0x1000); if (r_xmajor) dxr = (rslope > 0) ? rslope-0x800 : 0x800+0x1000; else if (rslope) dxr = (rslope > 0) ? 0 : 0x1000; else dxr = 0x1000; } } Vertex *vlcur, *vlnext, *vrcur, *vrnext; s32 xstart, xend; s32 xstart_int, xend_int; s32 slope_start, slope_end; if (lslope == 0 && rslope == 0 && polygon->Vertices[lcur]->FinalPosition[0] == polygon->Vertices[rcur]->FinalPosition[0]) { xstart = polygon->Vertices[lcur]->FinalPosition[0]; xend = xstart; } else { if (lslope > 0) { xstart = polygon->Vertices[lcur]->FinalPosition[0] + (dxl >> 12); if (xstart < polygon->Vertices[lcur]->FinalPosition[0]) xstart = polygon->Vertices[lcur]->FinalPosition[0]; else if (xstart > polygon->Vertices[lnext]->FinalPosition[0]-1) xstart = polygon->Vertices[lnext]->FinalPosition[0]-1; } else if (lslope < 0) { xstart = polygon->Vertices[lcur]->FinalPosition[0] - (dxl >> 12); if (xstart < polygon->Vertices[lnext]->FinalPosition[0]) xstart = polygon->Vertices[lnext]->FinalPosition[0]; else if (xstart > polygon->Vertices[lcur]->FinalPosition[0]-1) xstart = polygon->Vertices[lcur]->FinalPosition[0]-1; } else xstart = polygon->Vertices[lcur]->FinalPosition[0]; if (rslope > 0) { xend = polygon->Vertices[rcur]->FinalPosition[0] + (dxr >> 12); if (xend < polygon->Vertices[rcur]->FinalPosition[0]) xend = polygon->Vertices[rcur]->FinalPosition[0]; else if (xend > polygon->Vertices[rnext]->FinalPosition[0]-1) xend = polygon->Vertices[rnext]->FinalPosition[0]-1; } else if (rslope < 0) { xend = polygon->Vertices[rcur]->FinalPosition[0] - (dxr >> 12); if (xend < polygon->Vertices[rnext]->FinalPosition[0]) xend = polygon->Vertices[rnext]->FinalPosition[0]; else if (xend > polygon->Vertices[rcur]->FinalPosition[0]-1) xend = polygon->Vertices[rcur]->FinalPosition[0]-1; } else xend = polygon->Vertices[rcur]->FinalPosition[0] - 1; } // if the left and right edges are swapped, render backwards. // note: we 'forget' to swap the xmajor flags, on purpose // the hardware has the same bug if (xstart > xend) { vlcur = polygon->Vertices[rcur]; vlnext = polygon->Vertices[rnext]; vrcur = polygon->Vertices[lcur]; vrnext = polygon->Vertices[lnext]; slope_start = rslope; slope_end = lslope; s32 tmp = xstart; xstart = xend; xend = tmp; } else { vlcur = polygon->Vertices[lcur]; vlnext = polygon->Vertices[lnext]; vrcur = polygon->Vertices[rcur]; vrnext = polygon->Vertices[rnext]; slope_start = lslope; slope_end = rslope; } // interpolate attributes along Y s64 lfactor1, lfactor2; s64 rfactor1, rfactor2; if (l_xmajor) { lfactor1 = (vlnext->FinalPosition[0] - xstart) * vlnext->FinalPosition[3]; lfactor2 = (xstart - vlcur->FinalPosition[0]) * vlcur->FinalPosition[3]; } else { lfactor1 = (vlnext->FinalPosition[1] - y) * vlnext->FinalPosition[3]; lfactor2 = (y - vlcur->FinalPosition[1]) * vlcur->FinalPosition[3]; } s64 ldenom = lfactor1 + lfactor2; if (ldenom == 0) { lfactor1 = 0x1000; lfactor2 = 0; ldenom = 0x1000; } if (r_xmajor) { rfactor1 = (vrnext->FinalPosition[0] - xend+1) * vrnext->FinalPosition[3]; rfactor2 = (xend+1 - vrcur->FinalPosition[0]) * vrcur->FinalPosition[3]; } else { rfactor1 = (vrnext->FinalPosition[1] - y) * vrnext->FinalPosition[3]; rfactor2 = (y - vrcur->FinalPosition[1]) * vrcur->FinalPosition[3]; } s64 rdenom = rfactor1 + rfactor2; if (rdenom == 0) { rfactor1 = 0x1000; rfactor2 = 0; rdenom = 0x1000; } s32 zl = ((lfactor1 * vlcur->FinalPosition[2]) + (lfactor2 * vlnext->FinalPosition[2])) / ldenom; s32 zr = ((rfactor1 * vrcur->FinalPosition[2]) + (rfactor2 * vrnext->FinalPosition[2])) / rdenom; s32 wl = ((lfactor1 * vlcur->FinalPosition[3]) + (lfactor2 * vlnext->FinalPosition[3])) / ldenom; s32 wr = ((rfactor1 * vrcur->FinalPosition[3]) + (rfactor2 * vrnext->FinalPosition[3])) / rdenom; s32 rl = ((lfactor1 * vlcur->FinalColor[0]) + (lfactor2 * vlnext->FinalColor[0])) / ldenom; s32 gl = ((lfactor1 * vlcur->FinalColor[1]) + (lfactor2 * vlnext->FinalColor[1])) / ldenom; s32 bl = ((lfactor1 * vlcur->FinalColor[2]) + (lfactor2 * vlnext->FinalColor[2])) / ldenom; s32 sl = ((lfactor1 * vlcur->TexCoords[0]) + (lfactor2 * vlnext->TexCoords[0])) / ldenom; s32 tl = ((lfactor1 * vlcur->TexCoords[1]) + (lfactor2 * vlnext->TexCoords[1])) / ldenom; s32 rr = ((rfactor1 * vrcur->FinalColor[0]) + (rfactor2 * vrnext->FinalColor[0])) / rdenom; s32 gr = ((rfactor1 * vrcur->FinalColor[1]) + (rfactor2 * vrnext->FinalColor[1])) / rdenom; s32 br = ((rfactor1 * vrcur->FinalColor[2]) + (rfactor2 * vrnext->FinalColor[2])) / rdenom; s32 sr = ((rfactor1 * vrcur->TexCoords[0]) + (rfactor2 * vrnext->TexCoords[0])) / rdenom; s32 tr = ((rfactor1 * vrcur->TexCoords[1]) + (rfactor2 * vrnext->TexCoords[1])) / rdenom; // calculate edges s32 l_edgeend, r_edgestart; if (l_xmajor) { if (slope_start > 0) l_edgeend = vlcur->FinalPosition[0] + ((dxl + slope_start) >> 12); else l_edgeend = vlcur->FinalPosition[0] - ((dxl - slope_start) >> 12); if (l_edgeend == xstart) l_edgeend++; } else l_edgeend = xstart + 1; if (r_xmajor) { if (slope_end > 0) r_edgestart = vrcur->FinalPosition[0] + ((dxr + slope_end) >> 12); else r_edgestart = vrcur->FinalPosition[0] - ((dxr - slope_end) >> 12); if (r_edgestart == xend_int) r_edgestart--; } else r_edgestart = xend - 1; // edge fill rules for opaque pixels: // * right edge is filled if slope > 1 // * left edge is filled if slope <= 1 // * edges with slope = 0 are always filled // edges are always filled if the pixels are translucent // in wireframe mode, there are special rules for equal Z (TODO) for (s32 x = xstart; x <= xend; x++) { if (x < 0) continue; if (x > 255) break; int edge = 0; if (y == ytop) edge |= 0x4; else if (y == ybot-1) edge |= 0x8; if (x < l_edgeend) edge |= 0x1; else if (x > r_edgestart) edge |= 0x2; // wireframe polygons. really ugly, but works if (wireframe && edge==0) continue; s64 factor1 = (xend+1 - x) * wr; s64 factor2 = (x - xstart) * wl; s64 denom = factor1 + factor2; if (denom == 0) { factor1 = 0x1000; factor2 = 0; denom = 0x1000; } s32 z = ((factor1 * zl) + (factor2 * zr)) / denom; if (!DepthTest(polygon, x, y, z)) continue; u32 vr = ((factor1 * rl) + (factor2 * rr)) / denom; u32 vg = ((factor1 * gl) + (factor2 * gr)) / denom; u32 vb = ((factor1 * bl) + (factor2 * br)) / denom; s16 s = ((factor1 * sl) + (factor2 * sr)) / denom; s16 t = ((factor1 * tl) + (factor2 * tr)) / denom; u32 color = RenderPixel(polygon, x, y, z, vr>>3, vg>>3, vb>>3, s, t); u32 attr = 0; u32 pixeladdr = (y*256) + x; u8 alpha = color >> 24; // alpha test if (DispCnt & (1<<2)) { if (alpha <= AlphaRef) continue; } else { if (alpha == 0) continue; } // alpha blending disable // TODO: check alpha test when blending is disabled if (!(DispCnt & (1<<3))) alpha = 31; u32 dstcolor = ColorBuffer[pixeladdr]; u32 dstalpha = dstcolor >> 24; if (alpha == 31) { // edge fill rules for opaque pixels // TODO, eventually: antialiasing if (!wireframe) { if ((edge & 0x1) && slope_start > 0x1000) continue; if ((edge & 0x2) && (slope_end != 0 && slope_end <= 0x1000)) continue; } DepthBuffer[pixeladdr] = z; } else if (dstalpha == 0) { // TODO: conditional Z-buffer update DepthBuffer[pixeladdr] = z; } else { u32 srcR = color & 0x3F; u32 srcG = (color >> 8) & 0x3F; u32 srcB = (color >> 16) & 0x3F; u32 dstR = dstcolor & 0x3F; u32 dstG = (dstcolor >> 8) & 0x3F; u32 dstB = (dstcolor >> 16) & 0x3F; alpha++; dstR = ((srcR * alpha) + (dstR * (32-alpha))) >> 5; dstG = ((srcG * alpha) + (dstG * (32-alpha))) >> 5; dstB = ((srcB * alpha) + (dstB * (32-alpha))) >> 5; alpha--; if (alpha > dstalpha) dstalpha = alpha; color = dstR | (dstG << 8) | (dstB << 16) | (dstalpha << 24); // TODO: conditional Z-buffer update DepthBuffer[pixeladdr] = z; } ColorBuffer[pixeladdr] = color; AttrBuffer[pixeladdr] = attr; } if (lslope > 0) dxl += lslope; else dxl -= lslope; if (rslope > 0) dxr += rslope; else dxr -= rslope; } } void RenderFrame(Vertex* vertices, Polygon* polygons, int npolys) { u32 polyid = (ClearAttr1 >> 24) & 0x3F; if (DispCnt & (1<<14)) { u8 xoff = (ClearAttr2 >> 16) & 0xFF; u8 yoff = (ClearAttr2 >> 24) & 0xFF; for (int y = 0; y < 256*192; y += 256) { for (int x = 0; x < 256; x++) { u16 val2 = GPU::ReadVRAM_Texture(0x40000 + (yoff << 9) + (xoff << 1)); u16 val3 = GPU::ReadVRAM_Texture(0x60000 + (yoff << 9) + (xoff << 1)); // TODO: confirm color conversion u32 r = (val2 << 1) & 0x3E; if (r) r++; u32 g = (val2 >> 4) & 0x3E; if (g) g++; u32 b = (val2 >> 9) & 0x3E; if (b) b++; u32 a = (val2 & 0x8000) ? 0x1F000000 : 0; u32 color = r | (g << 8) | (b << 16) | a; u32 z = ((val3 & 0x7FFF) * 0x200) + 0x1FF; if (z >= 0x10000 && z < 0xFFFFFF) z++; ColorBuffer[y+x] = color; DepthBuffer[y+x] = z; AttrBuffer[y+x] = polyid | ((val3 & 0x8000) >> 7); xoff++; } yoff++; } } else { // TODO: confirm color conversion u32 r = (ClearAttr1 << 1) & 0x3E; if (r) r++; u32 g = (ClearAttr1 >> 4) & 0x3E; if (g) g++; u32 b = (ClearAttr1 >> 9) & 0x3E; if (b) b++; u32 a = (ClearAttr1 >> 16) & 0x1F; u32 color = r | (g << 8) | (b << 16) | (a << 24); u32 z = ((ClearAttr2 & 0x7FFF) * 0x200) + 0x1FF; if (z >= 0x10000 && z < 0xFFFFFF) z++; polyid |= ((ClearAttr1 & 0x8000) >> 7); for (int i = 0; i < 256*192; i++) { ColorBuffer[i] = color; DepthBuffer[i] = z; AttrBuffer[i] = polyid; } } // TODO: Y-sorting of translucent polygons for (int i = 0; i < npolys; i++) { if (polygons[i].Translucent) continue; RenderPolygon(&polygons[i]); } for (int i = 0; i < npolys; i++) { if (!polygons[i].Translucent) continue; RenderPolygon(&polygons[i]); } } u32* GetLine(int line) { return &ColorBuffer[line * 256]; } } }