diff options
Diffstat (limited to 'src/dolphin/x64Emitter.cpp')
-rw-r--r-- | src/dolphin/x64Emitter.cpp | 3399 |
1 files changed, 3399 insertions, 0 deletions
diff --git a/src/dolphin/x64Emitter.cpp b/src/dolphin/x64Emitter.cpp new file mode 100644 index 0000000..343f314 --- /dev/null +++ b/src/dolphin/x64Emitter.cpp @@ -0,0 +1,3399 @@ +// Copyright 2008 Dolphin Emulator Project +// Licensed under GPLv2+ +// Refer to the license_dolphin.txt file included. + +#include <cinttypes> +#include <cstring> + +#include "CPUDetect.h" +#include "../types.h" +#include "x64Emitter.h" +#include "x64Reg.h" +#include "Compat.h" +#include "CommonFuncs.h" + +namespace Gen +{ +// TODO(ector): Add EAX special casing, for ever so slightly smaller code. +struct NormalOpDef +{ + u8 toRm8, toRm32, fromRm8, fromRm32, imm8, imm32, simm8, eaximm8, eaximm32, ext; +}; + +// 0xCC is code for invalid combination of immediates +static const NormalOpDef normalops[11] = { + {0x00, 0x01, 0x02, 0x03, 0x80, 0x81, 0x83, 0x04, 0x05, 0}, // ADD + {0x10, 0x11, 0x12, 0x13, 0x80, 0x81, 0x83, 0x14, 0x15, 2}, // ADC + + {0x28, 0x29, 0x2A, 0x2B, 0x80, 0x81, 0x83, 0x2C, 0x2D, 5}, // SUB + {0x18, 0x19, 0x1A, 0x1B, 0x80, 0x81, 0x83, 0x1C, 0x1D, 3}, // SBB + + {0x20, 0x21, 0x22, 0x23, 0x80, 0x81, 0x83, 0x24, 0x25, 4}, // AND + {0x08, 0x09, 0x0A, 0x0B, 0x80, 0x81, 0x83, 0x0C, 0x0D, 1}, // OR + + {0x30, 0x31, 0x32, 0x33, 0x80, 0x81, 0x83, 0x34, 0x35, 6}, // XOR + {0x88, 0x89, 0x8A, 0x8B, 0xC6, 0xC7, 0xCC, 0xCC, 0xCC, 0}, // MOV + + {0x84, 0x85, 0x84, 0x85, 0xF6, 0xF7, 0xCC, 0xA8, 0xA9, 0}, // TEST (to == from) + {0x38, 0x39, 0x3A, 0x3B, 0x80, 0x81, 0x83, 0x3C, 0x3D, 7}, // CMP + + {0x86, 0x87, 0x86, 0x87, 0xCC, 0xCC, 0xCC, 0xCC, 0xCC, 7}, // XCHG +}; + +enum NormalSSEOps +{ + sseCMP = 0xC2, + sseADD = 0x58, // ADD + sseSUB = 0x5C, // SUB + sseAND = 0x54, // AND + sseANDN = 0x55, // ANDN + sseOR = 0x56, + sseXOR = 0x57, + sseMUL = 0x59, // MUL + sseDIV = 0x5E, // DIV + sseMIN = 0x5D, // MIN + sseMAX = 0x5F, // MAX + sseCOMIS = 0x2F, // COMIS + sseUCOMIS = 0x2E, // UCOMIS + sseSQRT = 0x51, // SQRT + sseRCP = 0x53, // RCP + sseRSQRT = 0x52, // RSQRT (NO DOUBLE PRECISION!!!) + sseMOVAPfromRM = 0x28, // MOVAP from RM + sseMOVAPtoRM = 0x29, // MOVAP to RM + sseMOVUPfromRM = 0x10, // MOVUP from RM + sseMOVUPtoRM = 0x11, // MOVUP to RM + sseMOVLPfromRM = 0x12, + sseMOVLPtoRM = 0x13, + sseMOVHPfromRM = 0x16, + sseMOVHPtoRM = 0x17, + sseMOVHLPS = 0x12, + sseMOVLHPS = 0x16, + sseMOVDQfromRM = 0x6F, + sseMOVDQtoRM = 0x7F, + sseMASKMOVDQU = 0xF7, + sseLDDQU = 0xF0, + sseSHUF = 0xC6, + sseMOVNTDQ = 0xE7, + sseMOVNTP = 0x2B, +}; + +enum class NormalOp +{ + ADD, + ADC, + SUB, + SBB, + AND, + OR, + XOR, + MOV, + TEST, + CMP, + XCHG, +}; + +enum class FloatOp +{ + LD = 0, + ST = 2, + STP = 3, + LD80 = 5, + STP80 = 7, + + Invalid = -1, +}; + +void XEmitter::SetCodePtr(u8* ptr) +{ + code = ptr; +} + +const u8* XEmitter::GetCodePtr() const +{ + return code; +} + +u8* XEmitter::GetWritableCodePtr() +{ + return code; +} + +void XEmitter::Write8(u8 value) +{ + *code++ = value; +} + +void XEmitter::Write16(u16 value) +{ + std::memcpy(code, &value, sizeof(u16)); + code += sizeof(u16); +} + +void XEmitter::Write32(u32 value) +{ + std::memcpy(code, &value, sizeof(u32)); + code += sizeof(u32); +} + +void XEmitter::Write64(u64 value) +{ + std::memcpy(code, &value, sizeof(u64)); + code += sizeof(u64); +} + +void XEmitter::ReserveCodeSpace(int bytes) +{ + for (int i = 0; i < bytes; i++) + *code++ = 0xCC; +} + +u8* XEmitter::AlignCodeTo(size_t alignment) +{ + ASSERT_MSG(DYNA_REC, alignment != 0 && (alignment & (alignment - 1)) == 0, + "Alignment must be power of two"); + u64 c = reinterpret_cast<u64>(code) & (alignment - 1); + if (c) + ReserveCodeSpace(static_cast<int>(alignment - c)); + return code; +} + +u8* XEmitter::AlignCode4() +{ + return AlignCodeTo(4); +} + +u8* XEmitter::AlignCode16() +{ + return AlignCodeTo(16); +} + +u8* XEmitter::AlignCodePage() +{ + return AlignCodeTo(4096); +} + +// This operation modifies flags; check to see the flags are locked. +// If the flags are locked, we should immediately and loudly fail before +// causing a subtle JIT bug. +void XEmitter::CheckFlags() +{ + ASSERT_MSG(DYNA_REC, !flags_locked, "Attempt to modify flags while flags locked!"); +} + +void XEmitter::WriteModRM(int mod, int reg, int rm) +{ + Write8((u8)((mod << 6) | ((reg & 7) << 3) | (rm & 7))); +} + +void XEmitter::WriteSIB(int scale, int index, int base) +{ + Write8((u8)((scale << 6) | ((index & 7) << 3) | (base & 7))); +} + +void OpArg::WriteREX(XEmitter* emit, int opBits, int bits, int customOp) const +{ + if (customOp == -1) + customOp = operandReg; + u8 op = 0x40; + // REX.W (whether operation is a 64-bit operation) + if (opBits == 64) + op |= 8; + // REX.R (whether ModR/M reg field refers to R8-R15. + if (customOp & 8) + op |= 4; + // REX.X (whether ModR/M SIB index field refers to R8-R15) + if (indexReg & 8) + op |= 2; + // REX.B (whether ModR/M rm or SIB base or opcode reg field refers to R8-R15) + if (offsetOrBaseReg & 8) + op |= 1; + // Write REX if wr have REX bits to write, or if the operation accesses + // SIL, DIL, BPL, or SPL. + if (op != 0x40 || (scale == SCALE_NONE && bits == 8 && (offsetOrBaseReg & 0x10c) == 4) || + (opBits == 8 && (customOp & 0x10c) == 4)) + { + emit->Write8(op); + // Check the operation doesn't access AH, BH, CH, or DH. + DEBUG_ASSERT((offsetOrBaseReg & 0x100) == 0); + DEBUG_ASSERT((customOp & 0x100) == 0); + } +} + +void OpArg::WriteVEX(XEmitter* emit, X64Reg regOp1, X64Reg regOp2, int L, int pp, int mmmmm, + int W) const +{ + int R = !(regOp1 & 8); + int X = !(indexReg & 8); + int B = !(offsetOrBaseReg & 8); + + int vvvv = (regOp2 == X64Reg::INVALID_REG) ? 0xf : (regOp2 ^ 0xf); + + // do we need any VEX fields that only appear in the three-byte form? + if (X == 1 && B == 1 && W == 0 && mmmmm == 1) + { + u8 RvvvvLpp = (R << 7) | (vvvv << 3) | (L << 2) | pp; + emit->Write8(0xC5); + emit->Write8(RvvvvLpp); + } + else + { + u8 RXBmmmmm = (R << 7) | (X << 6) | (B << 5) | mmmmm; + u8 WvvvvLpp = (W << 7) | (vvvv << 3) | (L << 2) | pp; + emit->Write8(0xC4); + emit->Write8(RXBmmmmm); + emit->Write8(WvvvvLpp); + } +} + +void OpArg::WriteRest(XEmitter* emit, int extraBytes, X64Reg _operandReg, + bool warn_64bit_offset) const +{ + if (_operandReg == INVALID_REG) + _operandReg = (X64Reg)this->operandReg; + int mod = 0; + int ireg = indexReg; + bool SIB = false; + int _offsetOrBaseReg = this->offsetOrBaseReg; + + if (scale == SCALE_RIP) // Also, on 32-bit, just an immediate address + { + // Oh, RIP addressing. + _offsetOrBaseReg = 5; + emit->WriteModRM(0, _operandReg, _offsetOrBaseReg); + // TODO : add some checks + u64 ripAddr = (u64)emit->GetCodePtr() + 4 + extraBytes; + s64 distance = (s64)offset - (s64)ripAddr; + ASSERT_MSG(DYNA_REC, + (distance < 0x80000000LL && distance >= -0x80000000LL) || !warn_64bit_offset, + "WriteRest: op out of range (0x%" PRIx64 " uses 0x%" PRIx64 ")", ripAddr, offset); + s32 offs = (s32)distance; + emit->Write32((u32)offs); + return; + } + + if (scale == 0) + { + // Oh, no memory, Just a reg. + mod = 3; // 11 + } + else + { + // Ah good, no scaling. + if (scale == SCALE_ATREG && !((_offsetOrBaseReg & 7) == 4 || (_offsetOrBaseReg & 7) == 5)) + { + // Okay, we're good. No SIB necessary. + int ioff = (int)offset; + if (ioff == 0) + { + mod = 0; + } + else if (ioff < -128 || ioff > 127) + { + mod = 2; // 32-bit displacement + } + else + { + mod = 1; // 8-bit displacement + } + } + else if (scale >= SCALE_NOBASE_2 && scale <= SCALE_NOBASE_8) + { + SIB = true; + mod = 0; + _offsetOrBaseReg = 5; + } + else + { + if ((_offsetOrBaseReg & 7) == 4) // this would occupy the SIB encoding :( + { + // So we have to fake it with SIB encoding :( + SIB = true; + } + + if (scale >= SCALE_1 && scale < SCALE_ATREG) + { + SIB = true; + } + + if (scale == SCALE_ATREG && ((_offsetOrBaseReg & 7) == 4)) + { + SIB = true; + ireg = _offsetOrBaseReg; + } + + // Okay, we're fine. Just disp encoding. + // We need displacement. Which size? + int ioff = (int)(s64)offset; + if (ioff < -128 || ioff > 127) + { + mod = 2; // 32-bit displacement + } + else + { + mod = 1; // 8-bit displacement + } + } + } + + // Okay. Time to do the actual writing + // ModRM byte: + int oreg = _offsetOrBaseReg; + if (SIB) + oreg = 4; + + emit->WriteModRM(mod, _operandReg & 7, oreg & 7); + + if (SIB) + { + // SIB byte + int ss; + switch (scale) + { + case SCALE_NONE: + _offsetOrBaseReg = 4; + ss = 0; + break; // RSP + case SCALE_1: + ss = 0; + break; + case SCALE_2: + ss = 1; + break; + case SCALE_4: + ss = 2; + break; + case SCALE_8: + ss = 3; + break; + case SCALE_NOBASE_2: + ss = 1; + break; + case SCALE_NOBASE_4: + ss = 2; + break; + case SCALE_NOBASE_8: + ss = 3; + break; + case SCALE_ATREG: + ss = 0; + break; + default: + ASSERT_MSG(DYNA_REC, 0, "Invalid scale for SIB byte"); + ss = 0; + break; + } + emit->Write8((u8)((ss << 6) | ((ireg & 7) << 3) | (_offsetOrBaseReg & 7))); + } + + if (mod == 1) // 8-bit disp + { + emit->Write8((u8)(s8)(s32)offset); + } + else if (mod == 2 || (scale >= SCALE_NOBASE_2 && scale <= SCALE_NOBASE_8)) // 32-bit disp + { + emit->Write32((u32)offset); + } +} + +// W = operand extended width (1 if 64-bit) +// R = register# upper bit +// X = scale amnt upper bit +// B = base register# upper bit +void XEmitter::Rex(int w, int r, int x, int b) +{ + w = w ? 1 : 0; + r = r ? 1 : 0; + x = x ? 1 : 0; + b = b ? 1 : 0; + u8 rx = (u8)(0x40 | (w << 3) | (r << 2) | (x << 1) | (b)); + if (rx != 0x40) + Write8(rx); +} + +void XEmitter::JMP(const u8* addr, bool force5Bytes) +{ + u64 fn = (u64)addr; + if (!force5Bytes) + { + s64 distance = (s64)(fn - ((u64)code + 2)); + ASSERT_MSG(DYNA_REC, distance >= -0x80 && distance < 0x80, + "Jump target too far away, needs force5Bytes = true"); + // 8 bits will do + Write8(0xEB); + Write8((u8)(s8)distance); + } + else + { + s64 distance = (s64)(fn - ((u64)code + 5)); + + ASSERT_MSG(DYNA_REC, distance >= -0x80000000LL && distance < 0x80000000LL, + "Jump target too far away, needs indirect register"); + Write8(0xE9); + Write32((u32)(s32)distance); + } +} + +void XEmitter::JMPptr(const OpArg& arg2) +{ + OpArg arg = arg2; + if (arg.IsImm()) + ASSERT_MSG(DYNA_REC, 0, "JMPptr - Imm argument"); + arg.operandReg = 4; + arg.WriteREX(this, 0, 0); + Write8(0xFF); + arg.WriteRest(this); +} + +// Can be used to trap other processors, before overwriting their code +// not used in Dolphin +void XEmitter::JMPself() +{ + Write8(0xEB); + Write8(0xFE); +} + +void XEmitter::CALLptr(OpArg arg) +{ + if (arg.IsImm()) + ASSERT_MSG(DYNA_REC, 0, "CALLptr - Imm argument"); + arg.operandReg = 2; + arg.WriteREX(this, 0, 0); + Write8(0xFF); + arg.WriteRest(this); +} + +void XEmitter::CALL(const void* fnptr) +{ + u64 distance = u64(fnptr) - (u64(code) + 5); + ASSERT_MSG(DYNA_REC, distance < 0x0000000080000000ULL || distance >= 0xFFFFFFFF80000000ULL, + "CALL out of range (%p calls %p)", code, fnptr); + Write8(0xE8); + Write32(u32(distance)); +} + +FixupBranch XEmitter::CALL() +{ + FixupBranch branch; + branch.type = FixupBranch::Type::Branch32Bit; + branch.ptr = code + 5; + Write8(0xE8); + Write32(0); + return branch; +} + +FixupBranch XEmitter::J(bool force5bytes) +{ + FixupBranch branch; + branch.type = force5bytes ? FixupBranch::Type::Branch32Bit : FixupBranch::Type::Branch8Bit; + branch.ptr = code + (force5bytes ? 5 : 2); + if (!force5bytes) + { + // 8 bits will do + Write8(0xEB); + Write8(0); + } + else + { + Write8(0xE9); + Write32(0); + } + return branch; +} + +FixupBranch XEmitter::J_CC(CCFlags conditionCode, bool force5bytes) +{ + FixupBranch branch; + branch.type = force5bytes ? FixupBranch::Type::Branch32Bit : FixupBranch::Type::Branch8Bit; + branch.ptr = code + (force5bytes ? 6 : 2); + if (!force5bytes) + { + // 8 bits will do + Write8(0x70 + conditionCode); + Write8(0); + } + else + { + Write8(0x0F); + Write8(0x80 + conditionCode); + Write32(0); + } + return branch; +} + +void XEmitter::J_CC(CCFlags conditionCode, const u8* addr) +{ + u64 fn = (u64)addr; + s64 distance = (s64)(fn - ((u64)code + 2)); + if (distance < -0x80 || distance >= 0x80) + { + distance = (s64)(fn - ((u64)code + 6)); + ASSERT_MSG(DYNA_REC, distance >= -0x80000000LL && distance < 0x80000000LL, + "Jump target too far away, needs indirect register"); + Write8(0x0F); + Write8(0x80 + conditionCode); + Write32((u32)(s32)distance); + } + else + { + Write8(0x70 + conditionCode); + Write8((u8)(s8)distance); + } +} + +void XEmitter::SetJumpTarget(const FixupBranch& branch) +{ + if (branch.type == FixupBranch::Type::Branch8Bit) + { + s64 distance = (s64)(code - branch.ptr); + if (!(distance >= -0x80 && distance < 0x80)) + { + printf("miauz\n"); + } + ASSERT_MSG(DYNA_REC, distance >= -0x80 && distance < 0x80, + "Jump target too far away, needs force5Bytes = true"); + branch.ptr[-1] = (u8)(s8)distance; + } + else if (branch.type == FixupBranch::Type::Branch32Bit) + { + s64 distance = (s64)(code - branch.ptr); + ASSERT_MSG(DYNA_REC, distance >= -0x80000000LL && distance < 0x80000000LL, + "Jump target too far away, needs indirect register"); + + s32 valid_distance = static_cast<s32>(distance); + std::memcpy(&branch.ptr[-4], &valid_distance, sizeof(s32)); + } +} + +// Single byte opcodes +// There is no PUSHAD/POPAD in 64-bit mode. +void XEmitter::INT3() +{ + Write8(0xCC); +} +void XEmitter::RET() +{ + Write8(0xC3); +} +void XEmitter::RET_FAST() +{ + Write8(0xF3); + Write8(0xC3); +} // two-byte return (rep ret) - recommended by AMD optimization manual for the case of jumping to + // a ret + +// The first sign of decadence: optimized NOPs. +void XEmitter::NOP(size_t size) +{ + DEBUG_ASSERT((int)size > 0); + while (true) + { + switch (size) + { + case 0: + return; + case 1: + Write8(0x90); + return; + case 2: + Write8(0x66); + Write8(0x90); + return; + case 3: + Write8(0x0F); + Write8(0x1F); + Write8(0x00); + return; + case 4: + Write8(0x0F); + Write8(0x1F); + Write8(0x40); + Write8(0x00); + return; + case 5: + Write8(0x0F); + Write8(0x1F); + Write8(0x44); + Write8(0x00); + Write8(0x00); + return; + case 6: + Write8(0x66); + Write8(0x0F); + Write8(0x1F); + Write8(0x44); + Write8(0x00); + Write8(0x00); + return; + case 7: + Write8(0x0F); + Write8(0x1F); + Write8(0x80); + Write8(0x00); + Write8(0x00); + Write8(0x00); + Write8(0x00); + return; + case 8: + Write8(0x0F); + Write8(0x1F); + Write8(0x84); + Write8(0x00); + Write8(0x00); + Write8(0x00); + Write8(0x00); + Write8(0x00); + return; + case 9: + Write8(0x66); + Write8(0x0F); + Write8(0x1F); + Write8(0x84); + Write8(0x00); + Write8(0x00); + Write8(0x00); + Write8(0x00); + Write8(0x00); + return; + case 10: + Write8(0x66); + Write8(0x66); + Write8(0x0F); + Write8(0x1F); + Write8(0x84); + Write8(0x00); + Write8(0x00); + Write8(0x00); + Write8(0x00); + Write8(0x00); + return; + default: + // Even though x86 instructions are allowed to be up to 15 bytes long, + // AMD advises against using NOPs longer than 11 bytes because they + // carry a performance penalty on CPUs older than AMD family 16h. + Write8(0x66); + Write8(0x66); + Write8(0x66); + Write8(0x0F); + Write8(0x1F); + Write8(0x84); + Write8(0x00); + Write8(0x00); + Write8(0x00); + Write8(0x00); + Write8(0x00); + size -= 11; + continue; + } + } +} + +void XEmitter::PAUSE() +{ + Write8(0xF3); + NOP(); +} // use in tight spinloops for energy saving on some CPU +void XEmitter::CLC() +{ + CheckFlags(); + Write8(0xF8); +} // clear carry +void XEmitter::CMC() +{ + CheckFlags(); + Write8(0xF5); +} // flip carry +void XEmitter::STC() +{ + CheckFlags(); + Write8(0xF9); +} // set carry + +// TODO: xchg ah, al ??? +void XEmitter::XCHG_AHAL() +{ + Write8(0x86); + Write8(0xe0); + // alt. 86 c4 +} + +// These two can not be executed on early Intel 64-bit CPU:s, only on AMD! +void XEmitter::LAHF() +{ + Write8(0x9F); +} +void XEmitter::SAHF() +{ + CheckFlags(); + Write8(0x9E); +} + +void XEmitter::PUSHF() +{ + Write8(0x9C); +} +void XEmitter::POPF() +{ + CheckFlags(); + Write8(0x9D); +} + +void XEmitter::LFENCE() +{ + Write8(0x0F); + Write8(0xAE); + Write8(0xE8); +} +void XEmitter::MFENCE() +{ + Write8(0x0F); + Write8(0xAE); + Write8(0xF0); +} +void XEmitter::SFENCE() +{ + Write8(0x0F); + Write8(0xAE); + Write8(0xF8); +} + +void XEmitter::WriteSimple1Byte(int bits, u8 byte, X64Reg reg) +{ + if (bits == 16) + Write8(0x66); + Rex(bits == 64, 0, 0, (int)reg >> 3); + Write8(byte + ((int)reg & 7)); +} + +void XEmitter::WriteSimple2Byte(int bits, u8 byte1, u8 byte2, X64Reg reg) +{ + if (bits == 16) + Write8(0x66); + Rex(bits == 64, 0, 0, (int)reg >> 3); + Write8(byte1); + Write8(byte2 + ((int)reg & 7)); +} + +void XEmitter::CWD(int bits) +{ + if (bits == 16) + Write8(0x66); + Rex(bits == 64, 0, 0, 0); + Write8(0x99); +} + +void XEmitter::CBW(int bits) +{ + if (bits == 8) + Write8(0x66); + Rex(bits == 32, 0, 0, 0); + Write8(0x98); +} + +// Simple opcodes + +// push/pop do not need wide to be 64-bit +void XEmitter::PUSH(X64Reg reg) +{ + WriteSimple1Byte(32, 0x50, reg); +} +void XEmitter::POP(X64Reg reg) +{ + WriteSimple1Byte(32, 0x58, reg); +} + +void XEmitter::PUSH(int bits, const OpArg& reg) +{ + if (reg.IsSimpleReg()) + PUSH(reg.GetSimpleReg()); + else if (reg.IsImm()) + { + switch (reg.GetImmBits()) + { + case 8: + Write8(0x6A); + Write8((u8)(s8)reg.offset); + break; + case 16: + Write8(0x66); + Write8(0x68); + Write16((u16)(s16)(s32)reg.offset); + break; + case 32: + Write8(0x68); + Write32((u32)reg.offset); + break; + default: + ASSERT_MSG(DYNA_REC, 0, "PUSH - Bad imm bits"); + break; + } + } + else + { + if (bits == 16) + Write8(0x66); + reg.WriteREX(this, bits, bits); + Write8(0xFF); + reg.WriteRest(this, 0, (X64Reg)6); + } +} + +void XEmitter::POP(int /*bits*/, const OpArg& reg) +{ + if (reg.IsSimpleReg()) + POP(reg.GetSimpleReg()); + else + ASSERT_MSG(DYNA_REC, 0, "POP - Unsupported encoding"); +} + +void XEmitter::BSWAP(int bits, X64Reg reg) +{ + if (bits >= 32) + { + WriteSimple2Byte(bits, 0x0F, 0xC8, reg); + } + else if (bits == 16) + { + ROL(16, R(reg), Imm8(8)); + } + else if (bits == 8) + { + // Do nothing - can't bswap a single byte... + } + else + { + ASSERT_MSG(DYNA_REC, 0, "BSWAP - Wrong number of bits"); + } +} + +// Undefined opcode - reserved +// If we ever need a way to always cause a non-breakpoint hard exception... +void XEmitter::UD2() +{ + Write8(0x0F); + Write8(0x0B); +} + +void XEmitter::PREFETCH(PrefetchLevel level, OpArg arg) +{ + ASSERT_MSG(DYNA_REC, !arg.IsImm(), "PREFETCH - Imm argument"); + arg.operandReg = (u8)level; + arg.WriteREX(this, 0, 0); + Write8(0x0F); + Write8(0x18); + arg.WriteRest(this); +} + +void XEmitter::SETcc(CCFlags flag, OpArg dest) +{ + ASSERT_MSG(DYNA_REC, !dest.IsImm(), "SETcc - Imm argument"); + dest.operandReg = 0; + dest.WriteREX(this, 0, 8); + Write8(0x0F); + Write8(0x90 + (u8)flag); + dest.WriteRest(this); +} + +void XEmitter::CMOVcc(int bits, X64Reg dest, OpArg src, CCFlags flag) +{ + ASSERT_MSG(DYNA_REC, !src.IsImm(), "CMOVcc - Imm argument"); + ASSERT_MSG(DYNA_REC, bits != 8, "CMOVcc - 8 bits unsupported"); + if (bits == 16) + Write8(0x66); + src.operandReg = dest; + src.WriteREX(this, bits, bits); + Write8(0x0F); + Write8(0x40 + (u8)flag); + src.WriteRest(this); +} + +void XEmitter::WriteMulDivType(int bits, OpArg src, int ext) +{ + ASSERT_MSG(DYNA_REC, !src.IsImm(), "WriteMulDivType - Imm argument"); + CheckFlags(); + src.operandReg = ext; + if (bits == 16) + Write8(0x66); + src.WriteREX(this, bits, bits, 0); + if (bits == 8) + { + Write8(0xF6); + } + else + { + Write8(0xF7); + } + src.WriteRest(this); +} + +void XEmitter::MUL(int bits, const OpArg& src) +{ + WriteMulDivType(bits, src, 4); +} +void XEmitter::DIV(int bits, const OpArg& src) +{ + WriteMulDivType(bits, src, 6); +} +void XEmitter::IMUL(int bits, const OpArg& src) +{ + WriteMulDivType(bits, src, 5); +} +void XEmitter::IDIV(int bits, const OpArg& src) +{ + WriteMulDivType(bits, src, 7); +} +void XEmitter::NEG(int bits, const OpArg& src) +{ + WriteMulDivType(bits, src, 3); +} +void XEmitter::NOT(int bits, const OpArg& src) +{ + WriteMulDivType(bits, src, 2); +} + +void XEmitter::WriteBitSearchType(int bits, X64Reg dest, OpArg src, u8 byte2, bool rep) +{ + ASSERT_MSG(DYNA_REC, !src.IsImm(), "WriteBitSearchType - Imm argument"); + CheckFlags(); + src.operandReg = (u8)dest; + if (bits == 16) + Write8(0x66); + if (rep) + Write8(0xF3); + src.WriteREX(this, bits, bits); + Write8(0x0F); + Write8(byte2); + src.WriteRest(this); +} + +void XEmitter::MOVNTI(int bits, const OpArg& dest, X64Reg src) +{ + if (bits <= 16) + ASSERT_MSG(DYNA_REC, 0, "MOVNTI - bits<=16"); + WriteBitSearchType(bits, src, dest, 0xC3); +} + +void XEmitter::BSF(int bits, X64Reg dest, const OpArg& src) +{ + WriteBitSearchType(bits, dest, src, 0xBC); +} // Bottom bit to top bit +void XEmitter::BSR(int bits, X64Reg dest, const OpArg& src) +{ + WriteBitSearchType(bits, dest, src, 0xBD); +} // Top bit to bottom bit + +void XEmitter::TZCNT(int bits, X64Reg dest, const OpArg& src) +{ + CheckFlags(); + if (!cpu_info.bBMI1) + PanicAlert("Trying to use BMI1 on a system that doesn't support it. Bad programmer."); + WriteBitSearchType(bits, dest, src, 0xBC, true); +} +void XEmitter::LZCNT(int bits, X64Reg dest, const OpArg& src) +{ + CheckFlags(); + if (!cpu_info.bLZCNT) + PanicAlert("Trying to use LZCNT on a system that doesn't support it. Bad programmer."); + WriteBitSearchType(bits, dest, src, 0xBD, true); +} + +void XEmitter::MOVSX(int dbits, int sbits, X64Reg dest, OpArg src) +{ + ASSERT_MSG(DYNA_REC, !src.IsImm(), "MOVSX - Imm argument"); + if (dbits == sbits) + { + MOV(dbits, R(dest), src); + return; + } + src.operandReg = (u8)dest; + if (dbits == 16) + Write8(0x66); + src.WriteREX(this, dbits, sbits); + if (sbits == 8) + { + Write8(0x0F); + Write8(0xBE); + } + else if (sbits == 16) + { + Write8(0x0F); + Write8(0xBF); + } + else if (sbits == 32 && dbits == 64) + { + Write8(0x63); + } + else + { + Crash(); + } + src.WriteRest(this); +} + +void XEmitter::MOVZX(int dbits, int sbits, X64Reg dest, OpArg src) +{ + ASSERT_MSG(DYNA_REC, !src.IsImm(), "MOVZX - Imm argument"); + if (dbits == sbits) + { + MOV(dbits, R(dest), src); + return; + } + src.operandReg = (u8)dest; + if (dbits == 16) + Write8(0x66); + // the 32bit result is automatically zero extended to 64bit + src.WriteREX(this, dbits == 64 ? 32 : dbits, sbits); + if (sbits == 8) + { + Write8(0x0F); + Write8(0xB6); + } + else if (sbits == 16) + { + Write8(0x0F); + Write8(0xB7); + } + else if (sbits == 32 && dbits == 64) + { + Write8(0x8B); + } + else + { + ASSERT_MSG(DYNA_REC, 0, "MOVZX - Invalid size"); + } + src.WriteRest(this); +} + +void XEmitter::WriteMOVBE(int bits, u8 op, X64Reg reg, const OpArg& arg) +{ + ASSERT_MSG(DYNA_REC, cpu_info.bMOVBE, "Generating MOVBE on a system that does not support it."); + if (bits == 8) + { + MOV(8, op & 1 ? arg : R(reg), op & 1 ? R(reg) : arg); + return; + } + if (bits == 16) + Write8(0x66); + ASSERT_MSG(DYNA_REC, !arg.IsSimpleReg() && !arg.IsImm(), "MOVBE: need r<-m or m<-r!"); + arg.WriteREX(this, bits, bits, reg); + Write8(0x0F); + Write8(0x38); + Write8(op); + arg.WriteRest(this, 0, reg); +} +void XEmitter::MOVBE(int bits, X64Reg dest, const OpArg& src) +{ + WriteMOVBE(bits, 0xF0, dest, src); +} +void XEmitter::MOVBE(int bits, const OpArg& dest, X64Reg src) +{ + WriteMOVBE(bits, 0xF1, src, dest); +} + +void XEmitter::LoadAndSwap(int size, X64Reg dst, const OpArg& src, bool sign_extend, MovInfo* info) +{ + if (info) + { + info->address = GetWritableCodePtr(); + info->nonAtomicSwapStore = false; + } + + switch (size) + { + case 8: + if (sign_extend) + MOVSX(32, 8, dst, src); + else + MOVZX(32, 8, dst, src); + break; + case 16: + MOVZX(32, 16, dst, src); + if (sign_extend) + { + BSWAP(32, dst); + SAR(32, R(dst), Imm8(16)); + } + else + { + ROL(16, R(dst), Imm8(8)); + } + break; + case 32: + case 64: + if (cpu_info.bMOVBE) + { + MOVBE(size, dst, src); + } + else + { + MOV(size, R(dst), src); + BSWAP(size, dst); + } + break; + } +} + +void XEmitter::SwapAndStore(int size, const OpArg& dst, X64Reg src, MovInfo* info) +{ + if (cpu_info.bMOVBE) + { + if (info) + { + info->address = GetWritableCodePtr(); + info->nonAtomicSwapStore = false; + } + MOVBE(size, dst, src); + } + else + { + BSWAP(size, src); + if (info) + { + info->address = GetWritableCodePtr(); + info->nonAtomicSwapStore = true; + info->nonAtomicSwapStoreSrc = src; + } + MOV(size, dst, R(src)); + } +} + +void XEmitter::LEA(int bits, X64Reg dest, OpArg src) +{ + ASSERT_MSG(DYNA_REC, !src.IsImm(), "LEA - Imm argument"); + src.operandReg = (u8)dest; + if (bits == 16) + Write8(0x66); // TODO: performance warning + src.WriteREX(this, bits, bits); + Write8(0x8D); + src.WriteRest(this, 0, INVALID_REG, bits == 64); +} + +// shift can be either imm8 or cl +void XEmitter::WriteShift(int bits, OpArg dest, const OpArg& shift, int ext) +{ + CheckFlags(); + bool writeImm = false; + if (dest.IsImm()) + { + ASSERT_MSG(DYNA_REC, 0, "WriteShift - can't shift imms"); + } + if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) || + (shift.IsImm() && shift.GetImmBits() != 8)) + { + ASSERT_MSG(DYNA_REC, 0, "WriteShift - illegal argument"); + } + dest.operandReg = ext; + if (bits == 16) + Write8(0x66); + dest.WriteREX(this, bits, bits, 0); + if (shift.GetImmBits() == 8) + { + // ok an imm + u8 imm = (u8)shift.offset; + if (imm == 1) + { + Write8(bits == 8 ? 0xD0 : 0xD1); + } + else + { + writeImm = true; + Write8(bits == 8 ? 0xC0 : 0xC1); + } + } + else + { + Write8(bits == 8 ? 0xD2 : 0xD3); + } + dest.WriteRest(this, writeImm ? 1 : 0); + if (writeImm) + Write8((u8)shift.offset); +} + +// large rotates and shift are slower on Intel than AMD +// Intel likes to rotate by 1, and the op is smaller too +void XEmitter::ROL(int bits, const OpArg& dest, const OpArg& shift) +{ + WriteShift(bits, dest, shift, 0); +} +void XEmitter::ROR_(int bits, const OpArg& dest, const OpArg& shift) +{ + WriteShift(bits, dest, shift, 1); +} +void XEmitter::RCL(int bits, const OpArg& dest, const OpArg& shift) +{ + WriteShift(bits, dest, shift, 2); +} +void XEmitter::RCR(int bits, const OpArg& dest, const OpArg& shift) +{ + WriteShift(bits, dest, shift, 3); +} +void XEmitter::SHL(int bits, const OpArg& dest, const OpArg& shift) +{ + WriteShift(bits, dest, shift, 4); +} +void XEmitter::SHR(int bits, const OpArg& dest, const OpArg& shift) +{ + WriteShift(bits, dest, shift, 5); +} +void XEmitter::SAR(int bits, const OpArg& dest, const OpArg& shift) +{ + WriteShift(bits, dest, shift, 7); +} + +// index can be either imm8 or register, don't use memory destination because it's slow +void XEmitter::WriteBitTest(int bits, const OpArg& dest, const OpArg& index, int ext) +{ + CheckFlags(); + if (dest.IsImm()) + { + ASSERT_MSG(DYNA_REC, 0, "WriteBitTest - can't test imms"); + } + if ((index.IsImm() && index.GetImmBits() != 8)) + { + ASSERT_MSG(DYNA_REC, 0, "WriteBitTest - illegal argument"); + } + if (bits == 16) + Write8(0x66); + if (index.IsImm()) + { + dest.WriteREX(this, bits, bits); + Write8(0x0F); + Write8(0xBA); + dest.WriteRest(this, 1, (X64Reg)ext); + Write8((u8)index.offset); + } + else + { + X64Reg operand = index.GetSimpleReg(); + dest.WriteREX(this, bits, bits, operand); + Write8(0x0F); + Write8(0x83 + 8 * ext); + dest.WriteRest(this, 1, operand); + } +} + +void XEmitter::BT(int bits, const OpArg& dest, const OpArg& index) +{ + WriteBitTest(bits, dest, index, 4); +} +void XEmitter::BTS(int bits, const OpArg& dest, const OpArg& index) +{ + WriteBitTest(bits, dest, index, 5); +} +void XEmitter::BTR(int bits, const OpArg& dest, const OpArg& index) +{ + WriteBitTest(bits, dest, index, 6); +} +void XEmitter::BTC(int bits, const OpArg& dest, const OpArg& index) +{ + WriteBitTest(bits, dest, index, 7); +} + +// shift can be either imm8 or cl +void XEmitter::SHRD(int bits, const OpArg& dest, const OpArg& src, const OpArg& shift) +{ + CheckFlags(); + if (dest.IsImm()) + { + ASSERT_MSG(DYNA_REC, 0, "SHRD - can't use imms as destination"); + } + if (!src.IsSimpleReg()) + { + ASSERT_MSG(DYNA_REC, 0, "SHRD - must use simple register as source"); + } + if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) || + (shift.IsImm() && shift.GetImmBits() != 8)) + { + ASSERT_MSG(DYNA_REC, 0, "SHRD - illegal shift"); + } + if (bits == 16) + Write8(0x66); + X64Reg operand = src.GetSimpleReg(); + dest.WriteREX(this, bits, bits, operand); + if (shift.GetImmBits() == 8) + { + Write8(0x0F); + Write8(0xAC); + dest.WriteRest(this, 1, operand); + Write8((u8)shift.offset); + } + else + { + Write8(0x0F); + Write8(0xAD); + dest.WriteRest(this, 0, operand); + } +} + +void XEmitter::SHLD(int bits, const OpArg& dest, const OpArg& src, const OpArg& shift) +{ + CheckFlags(); + if (dest.IsImm()) + { + ASSERT_MSG(DYNA_REC, 0, "SHLD - can't use imms as destination"); + } + if (!src.IsSimpleReg()) + { + ASSERT_MSG(DYNA_REC, 0, "SHLD - must use simple register as source"); + } + if ((shift.IsSimpleReg() && shift.GetSimpleReg() != ECX) || + (shift.IsImm() && shift.GetImmBits() != 8)) + { + ASSERT_MSG(DYNA_REC, 0, "SHLD - illegal shift"); + } + if (bits == 16) + Write8(0x66); + X64Reg operand = src.GetSimpleReg(); + dest.WriteREX(this, bits, bits, operand); + if (shift.GetImmBits() == 8) + { + Write8(0x0F); + Write8(0xA4); + dest.WriteRest(this, 1, operand); + Write8((u8)shift.offset); + } + else + { + Write8(0x0F); + Write8(0xA5); + dest.WriteRest(this, 0, operand); + } +} + +void OpArg::WriteSingleByteOp(XEmitter* emit, u8 op, X64Reg _operandReg, int bits) +{ + if (bits == 16) + emit->Write8(0x66); + + this->operandReg = (u8)_operandReg; + WriteREX(emit, bits, bits); + emit->Write8(op); + WriteRest(emit); +} + +// operand can either be immediate or register +void OpArg::WriteNormalOp(XEmitter* emit, bool toRM, NormalOp op, const OpArg& operand, + int bits) const +{ + X64Reg _operandReg; + if (IsImm()) + { + ASSERT_MSG(DYNA_REC, 0, "WriteNormalOp - Imm argument, wrong order"); + } + + if (bits == 16) + emit->Write8(0x66); + + int immToWrite = 0; + const NormalOpDef& op_def = normalops[static_cast<int>(op)]; + + if (operand.IsImm()) + { + WriteREX(emit, bits, bits); + + if (!toRM) + { + ASSERT_MSG(DYNA_REC, 0, "WriteNormalOp - Writing to Imm (!toRM)"); + } + + if (operand.scale == SCALE_IMM8 && bits == 8) + { + // op al, imm8 + if (!scale && offsetOrBaseReg == AL && op_def.eaximm8 != 0xCC) + { + emit->Write8(op_def.eaximm8); + emit->Write8((u8)operand.offset); + return; + } + // mov reg, imm8 + if (!scale && op == NormalOp::MOV) + { + emit->Write8(0xB0 + (offsetOrBaseReg & 7)); + emit->Write8((u8)operand.offset); + return; + } + // op r/m8, imm8 + emit->Write8(op_def.imm8); + immToWrite = 8; + } + else if ((operand.scale == SCALE_IMM16 && bits == 16) || + (operand.scale == SCALE_IMM32 && bits == 32) || + (operand.scale == SCALE_IMM32 && bits == 64)) + { + // Try to save immediate size if we can, but first check to see + // if the instruction supports simm8. + // op r/m, imm8 + if (op_def.simm8 != 0xCC && + ((operand.scale == SCALE_IMM16 && (s16)operand.offset == (s8)operand.offset) || + (operand.scale == SCALE_IMM32 && (s32)operand.offset == (s8)operand.offset))) + { + emit->Write8(op_def.simm8); + immToWrite = 8; + } + else + { + // mov reg, imm + if (!scale && op == NormalOp::MOV && bits != 64) + { + emit->Write8(0xB8 + (offsetOrBaseReg & 7)); + if (bits == 16) + emit->Write16((u16)operand.offset); + else + emit->Write32((u32)operand.offset); + return; + } + // op eax, imm + if (!scale && offsetOrBaseReg == EAX && op_def.eaximm32 != 0xCC) + { + emit->Write8(op_def.eaximm32); + if (bits == 16) + emit->Write16((u16)operand.offset); + else + emit->Write32((u32)operand.offset); + return; + } + // op r/m, imm + emit->Write8(op_def.imm32); + immToWrite = bits == 16 ? 16 : 32; + } + } + else if ((operand.scale == SCALE_IMM8 && bits == 16) || + (operand.scale == SCALE_IMM8 && bits == 32) || + (operand.scale == SCALE_IMM8 && bits == 64)) + { + // op r/m, imm8 + emit->Write8(op_def.simm8); + immToWrite = 8; + } + else if (operand.scale == SCALE_IMM64 && bits == 64) + { + if (scale) + { + ASSERT_MSG(DYNA_REC, 0, + "WriteNormalOp - MOV with 64-bit imm requires register destination"); + } + // mov reg64, imm64 + else if (op == NormalOp::MOV) + { + // movabs reg64, imm64 (10 bytes) + if (static_cast<s64>(operand.offset) != static_cast<s32>(operand.offset)) + { + emit->Write8(0xB8 + (offsetOrBaseReg & 7)); + emit->Write64(operand.offset); + return; + } + // mov reg64, simm32 (7 bytes) + emit->Write8(op_def.imm32); + immToWrite = 32; + } + else + { + ASSERT_MSG(DYNA_REC, 0, "WriteNormalOp - Only MOV can take 64-bit imm"); + } + } + else + { + ASSERT_MSG(DYNA_REC, 0, "WriteNormalOp - Unhandled case %d %d", operand.scale, bits); + } + + // pass extension in REG of ModRM + _operandReg = static_cast<X64Reg>(op_def.ext); + } + else + { + _operandReg = (X64Reg)operand.offsetOrBaseReg; + WriteREX(emit, bits, bits, _operandReg); + // op r/m, reg + if (toRM) + { + emit->Write8(bits == 8 ? op_def.toRm8 : op_def.toRm32); + } + // op reg, r/m + else + { + emit->Write8(bits == 8 ? op_def.fromRm8 : op_def.fromRm32); + } + } + WriteRest(emit, immToWrite >> 3, _operandReg); + switch (immToWrite) + { + case 0: + break; + case 8: + emit->Write8((u8)operand.offset); + break; + case 16: + emit->Write16((u16)operand.offset); + break; + case 32: + emit->Write32((u32)operand.offset); + break; + default: + ASSERT_MSG(DYNA_REC, 0, "WriteNormalOp - Unhandled case"); + } +} + +void XEmitter::WriteNormalOp(int bits, NormalOp op, const OpArg& a1, const OpArg& a2) +{ + if (a1.IsImm()) + { + // Booh! Can't write to an imm + ASSERT_MSG(DYNA_REC, 0, "WriteNormalOp - a1 cannot be imm"); + return; + } + if (a2.IsImm()) + { + a1.WriteNormalOp(this, true, op, a2, bits); + } + else + { + if (a1.IsSimpleReg()) + { + a2.WriteNormalOp(this, false, op, a1, bits); + } + else + { + ASSERT_MSG(DYNA_REC, a2.IsSimpleReg() || a2.IsImm(), + "WriteNormalOp - a1 and a2 cannot both be memory"); + a1.WriteNormalOp(this, true, op, a2, bits); + } + } +} + +void XEmitter::ADD(int bits, const OpArg& a1, const OpArg& a2) +{ + CheckFlags(); + WriteNormalOp(bits, NormalOp::ADD, a1, a2); +} +void XEmitter::ADC(int bits, const OpArg& a1, const OpArg& a2) +{ + CheckFlags(); + WriteNormalOp(bits, NormalOp::ADC, a1, a2); +} +void XEmitter::SUB(int bits, const OpArg& a1, const OpArg& a2) +{ + CheckFlags(); + WriteNormalOp(bits, NormalOp::SUB, a1, a2); +} +void XEmitter::SBB(int bits, const OpArg& a1, const OpArg& a2) +{ + CheckFlags(); + WriteNormalOp(bits, NormalOp::SBB, a1, a2); +} +void XEmitter::AND(int bits, const OpArg& a1, const OpArg& a2) +{ + CheckFlags(); + WriteNormalOp(bits, NormalOp::AND, a1, a2); +} +void XEmitter::OR(int bits, const OpArg& a1, const OpArg& a2) +{ + CheckFlags(); + WriteNormalOp(bits, NormalOp::OR, a1, a2); +} +void XEmitter::XOR(int bits, const OpArg& a1, const OpArg& a2) +{ + CheckFlags(); + WriteNormalOp(bits, NormalOp::XOR, a1, a2); +} +void XEmitter::MOV(int bits, const OpArg& a1, const OpArg& a2) +{ + if (bits == 64 && a1.IsSimpleReg() && a2.scale == SCALE_IMM64 && + a2.offset == static_cast<u32>(a2.offset)) + { + WriteNormalOp(32, NormalOp::MOV, a1, a2.AsImm32()); + return; + } + if (a1.IsSimpleReg() && a2.IsSimpleReg() && a1.GetSimpleReg() == a2.GetSimpleReg()) + { + ERROR_LOG(DYNA_REC, "Redundant MOV @ %p - bug in JIT?", code); + } + WriteNormalOp(bits, NormalOp::MOV, a1, a2); +} +void XEmitter::TEST(int bits, const OpArg& a1, const OpArg& a2) +{ + CheckFlags(); + WriteNormalOp(bits, NormalOp::TEST, a1, a2); +} +void XEmitter::CMP(int bits, const OpArg& a1, const OpArg& a2) +{ + CheckFlags(); + WriteNormalOp(bits, NormalOp::CMP, a1, a2); +} +void XEmitter::XCHG(int bits, const OpArg& a1, const OpArg& a2) +{ + WriteNormalOp(bits, NormalOp::XCHG, a1, a2); +} +void XEmitter::CMP_or_TEST(int bits, const OpArg& a1, const OpArg& a2) +{ + CheckFlags(); + if (a1.IsSimpleReg() && a2.IsZero()) // turn 'CMP reg, 0' into shorter 'TEST reg, reg' + { + WriteNormalOp(bits, NormalOp::TEST, a1, a1); + } + else + { + WriteNormalOp(bits, NormalOp::CMP, a1, a2); + } +} + +void XEmitter::MOV_sum(int bits, X64Reg dest, const OpArg& a1, const OpArg& a2) +{ + // This stomps on flags, so ensure they aren't locked + DEBUG_ASSERT(!flags_locked); + + // Zero shortcuts (note that this can generate no code in the case where a1 == dest && a2 == zero + // or a2 == dest && a1 == zero) + if (a1.IsZero()) + { + if (!a2.IsSimpleReg() || a2.GetSimpleReg() != dest) + { + MOV(bits, R(dest), a2); + } + return; + } + if (a2.IsZero()) + { + if (!a1.IsSimpleReg() || a1.GetSimpleReg() != dest) + { + MOV(bits, R(dest), a1); + } + return; + } + + // If dest == a1 or dest == a2 we can simplify this + if (a1.IsSimpleReg() && a1.GetSimpleReg() == dest) + { + ADD(bits, R(dest), a2); + return; + } + + if (a2.IsSimpleReg() && a2.GetSimpleReg() == dest) + { + ADD(bits, R(dest), a1); + return; + } + + // TODO: 32-bit optimizations may apply to other bit sizes (confirm) + if (bits == 32) + { + if (a1.IsImm() && a2.IsImm()) + { + MOV(32, R(dest), Imm32(a1.Imm32() + a2.Imm32())); + return; + } + + if (a1.IsSimpleReg() && a2.IsSimpleReg()) + { + LEA(32, dest, MRegSum(a1.GetSimpleReg(), a2.GetSimpleReg())); + return; + } + + if (a1.IsSimpleReg() && a2.IsImm()) + { + LEA(32, dest, MDisp(a1.GetSimpleReg(), a2.Imm32())); + return; + } + + if (a1.IsImm() && a2.IsSimpleReg()) + { + LEA(32, dest, MDisp(a2.GetSimpleReg(), a1.Imm32())); + return; + } + } + + // Fallback + MOV(bits, R(dest), a1); + ADD(bits, R(dest), a2); +} + +void XEmitter::IMUL(int bits, X64Reg regOp, const OpArg& a1, const OpArg& a2) +{ + CheckFlags(); + if (bits == 8) + { + ASSERT_MSG(DYNA_REC, 0, "IMUL - illegal bit size!"); + return; + } + + if (a1.IsImm()) + { + ASSERT_MSG(DYNA_REC, 0, "IMUL - second arg cannot be imm!"); + return; + } + + if (!a2.IsImm()) + { + ASSERT_MSG(DYNA_REC, 0, "IMUL - third arg must be imm!"); + return; + } + + if (bits == 16) + Write8(0x66); + a1.WriteREX(this, bits, bits, regOp); + + if (a2.GetImmBits() == 8 || (a2.GetImmBits() == 16 && (s8)a2.offset == (s16)a2.offset) || + (a2.GetImmBits() == 32 && (s8)a2.offset == (s32)a2.offset)) + { + Write8(0x6B); + a1.WriteRest(this, 1, regOp); + Write8((u8)a2.offset); + } + else + { + Write8(0x69); + if (a2.GetImmBits() == 16 && bits == 16) + { + a1.WriteRest(this, 2, regOp); + Write16((u16)a2.offset); + } + else if (a2.GetImmBits() == 32 && (bits == 32 || bits == 64)) + { + a1.WriteRest(this, 4, regOp); + Write32((u32)a2.offset); + } + else + { + ASSERT_MSG(DYNA_REC, 0, "IMUL - unhandled case!"); + } + } +} + +void XEmitter::IMUL(int bits, X64Reg regOp, const OpArg& a) +{ + CheckFlags(); + if (bits == 8) + { + ASSERT_MSG(DYNA_REC, 0, "IMUL - illegal bit size!"); + return; + } + + if (a.IsImm()) + { + IMUL(bits, regOp, R(regOp), a); + return; + } + + if (bits == 16) + Write8(0x66); + a.WriteREX(this, bits, bits, regOp); + Write8(0x0F); + Write8(0xAF); + a.WriteRest(this, 0, regOp); +} + +void XEmitter::WriteSSEOp(u8 opPrefix, u16 op, X64Reg regOp, OpArg arg, int extrabytes) +{ + if (opPrefix) + Write8(opPrefix); + arg.operandReg = regOp; + arg.WriteREX(this, 0, 0); + Write8(0x0F); + if (op > 0xFF) + Write8((op >> 8) & 0xFF); + Write8(op & 0xFF); + arg.WriteRest(this, extrabytes); +} + +static int GetVEXmmmmm(u16 op) +{ + // Currently, only 0x38 and 0x3A are used as secondary escape byte. + if ((op >> 8) == 0x3A) + return 3; + else if ((op >> 8) == 0x38) + return 2; + else + return 1; +} + +static int GetVEXpp(u8 opPrefix) +{ + if (opPrefix == 0x66) + return 1; + else if (opPrefix == 0xF3) + return 2; + else if (opPrefix == 0xF2) + return 3; + else + return 0; +} + +void XEmitter::WriteVEXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, + int W, int extrabytes) +{ + int mmmmm = GetVEXmmmmm(op); + int pp = GetVEXpp(opPrefix); + // FIXME: we currently don't support 256-bit instructions, and "size" is not the vector size here + arg.WriteVEX(this, regOp1, regOp2, 0, pp, mmmmm, W); + Write8(op & 0xFF); + arg.WriteRest(this, extrabytes, regOp1); +} + +void XEmitter::WriteVEXOp4(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, + X64Reg regOp3, int W) +{ + WriteVEXOp(opPrefix, op, regOp1, regOp2, arg, W, 1); + Write8((u8)regOp3 << 4); +} + +void XEmitter::WriteAVXOp(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, + int W, int extrabytes) +{ + if (!cpu_info.bAVX) + PanicAlert("Trying to use AVX on a system that doesn't support it. Bad programmer."); + WriteVEXOp(opPrefix, op, regOp1, regOp2, arg, W, extrabytes); +} + +void XEmitter::WriteAVXOp4(u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, + X64Reg regOp3, int W) +{ + if (!cpu_info.bAVX) + PanicAlert("Trying to use AVX on a system that doesn't support it. Bad programmer."); + WriteVEXOp4(opPrefix, op, regOp1, regOp2, arg, regOp3, W); +} + +void XEmitter::WriteFMA3Op(u8 op, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, int W) +{ + if (!cpu_info.bFMA) + PanicAlert("Trying to use FMA3 on a system that doesn't support it. Computer is v. f'n madd."); + WriteVEXOp(0x66, 0x3800 | op, regOp1, regOp2, arg, W); +} + +void XEmitter::WriteFMA4Op(u8 op, X64Reg dest, X64Reg regOp1, X64Reg regOp2, const OpArg& arg, + int W) +{ + if (!cpu_info.bFMA4) + PanicAlert("Trying to use FMA4 on a system that doesn't support it. Computer is v. f'n madd."); + WriteVEXOp4(0x66, 0x3A00 | op, dest, regOp1, arg, regOp2, W); +} + +void XEmitter::WriteBMIOp(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, + const OpArg& arg, int extrabytes) +{ + if (arg.IsImm()) + PanicAlert("BMI1/2 instructions don't support immediate operands."); + if (size != 32 && size != 64) + PanicAlert("BMI1/2 instructions only support 32-bit and 64-bit modes!"); + int W = size == 64; + WriteVEXOp(opPrefix, op, regOp1, regOp2, arg, W, extrabytes); +} + +void XEmitter::WriteBMI1Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, + const OpArg& arg, int extrabytes) +{ + CheckFlags(); + if (!cpu_info.bBMI1) + PanicAlert("Trying to use BMI1 on a system that doesn't support it. Bad programmer."); + WriteBMIOp(size, opPrefix, op, regOp1, regOp2, arg, extrabytes); +} + +void XEmitter::WriteBMI2Op(int size, u8 opPrefix, u16 op, X64Reg regOp1, X64Reg regOp2, + const OpArg& arg, int extrabytes) +{ + if (!cpu_info.bBMI2) + PanicAlert("Trying to use BMI2 on a system that doesn't support it. Bad programmer."); + WriteBMIOp(size, opPrefix, op, regOp1, regOp2, arg, extrabytes); +} + +void XEmitter::MOVD_xmm(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0x6E, dest, arg, 0); +} +void XEmitter::MOVD_xmm(const OpArg& arg, X64Reg src) +{ + WriteSSEOp(0x66, 0x7E, src, arg, 0); +} + +void XEmitter::MOVQ_xmm(X64Reg dest, OpArg arg) +{ + // Alternate encoding + // This does not display correctly in MSVC's debugger, it thinks it's a MOVD + arg.operandReg = dest; + Write8(0x66); + arg.WriteREX(this, 64, 0); + Write8(0x0f); + Write8(0x6E); + arg.WriteRest(this, 0); +} + +void XEmitter::MOVQ_xmm(OpArg arg, X64Reg src) +{ + if (src > 7 || arg.IsSimpleReg()) + { + // Alternate encoding + // This does not display correctly in MSVC's debugger, it thinks it's a MOVD + arg.operandReg = src; + Write8(0x66); + arg.WriteREX(this, 64, 0); + Write8(0x0f); + Write8(0x7E); + arg.WriteRest(this, 0); + } + else + { + arg.operandReg = src; + arg.WriteREX(this, 0, 0); + Write8(0x66); + Write8(0x0f); + Write8(0xD6); + arg.WriteRest(this, 0); + } +} + +void XEmitter::WriteMXCSR(OpArg arg, int ext) +{ + if (arg.IsImm() || arg.IsSimpleReg()) + ASSERT_MSG(DYNA_REC, 0, "MXCSR - invalid operand"); + + arg.operandReg = ext; + arg.WriteREX(this, 0, 0); + Write8(0x0F); + Write8(0xAE); + arg.WriteRest(this); +} + +void XEmitter::STMXCSR(const OpArg& memloc) +{ + WriteMXCSR(memloc, 3); +} +void XEmitter::LDMXCSR(const OpArg& memloc) +{ + WriteMXCSR(memloc, 2); +} + +void XEmitter::MOVNTDQ(const OpArg& arg, X64Reg regOp) +{ + WriteSSEOp(0x66, sseMOVNTDQ, regOp, arg); +} +void XEmitter::MOVNTPS(const OpArg& arg, X64Reg regOp) +{ + WriteSSEOp(0x00, sseMOVNTP, regOp, arg); +} +void XEmitter::MOVNTPD(const OpArg& arg, X64Reg regOp) +{ + WriteSSEOp(0x66, sseMOVNTP, regOp, arg); +} + +void XEmitter::ADDSS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF3, sseADD, regOp, arg); +} +void XEmitter::ADDSD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF2, sseADD, regOp, arg); +} +void XEmitter::SUBSS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF3, sseSUB, regOp, arg); +} +void XEmitter::SUBSD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF2, sseSUB, regOp, arg); +} +void XEmitter::CMPSS(X64Reg regOp, const OpArg& arg, u8 compare) +{ + WriteSSEOp(0xF3, sseCMP, regOp, arg, 1); + Write8(compare); +} +void XEmitter::CMPSD(X64Reg regOp, const OpArg& arg, u8 compare) +{ + WriteSSEOp(0xF2, sseCMP, regOp, arg, 1); + Write8(compare); +} +void XEmitter::MULSS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF3, sseMUL, regOp, arg); +} +void XEmitter::MULSD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF2, sseMUL, regOp, arg); +} +void XEmitter::DIVSS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF3, sseDIV, regOp, arg); +} +void XEmitter::DIVSD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF2, sseDIV, regOp, arg); +} +void XEmitter::MINSS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF3, sseMIN, regOp, arg); +} +void XEmitter::MINSD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF2, sseMIN, regOp, arg); +} +void XEmitter::MAXSS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF3, sseMAX, regOp, arg); +} +void XEmitter::MAXSD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF2, sseMAX, regOp, arg); +} +void XEmitter::SQRTSS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF3, sseSQRT, regOp, arg); +} +void XEmitter::SQRTSD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF2, sseSQRT, regOp, arg); +} +void XEmitter::RCPSS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF3, sseRCP, regOp, arg); +} +void XEmitter::RSQRTSS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF3, sseRSQRT, regOp, arg); +} + +void XEmitter::ADDPS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x00, sseADD, regOp, arg); +} +void XEmitter::ADDPD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x66, sseADD, regOp, arg); +} +void XEmitter::SUBPS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x00, sseSUB, regOp, arg); +} +void XEmitter::SUBPD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x66, sseSUB, regOp, arg); +} +void XEmitter::CMPPS(X64Reg regOp, const OpArg& arg, u8 compare) +{ + WriteSSEOp(0x00, sseCMP, regOp, arg, 1); + Write8(compare); +} +void XEmitter::CMPPD(X64Reg regOp, const OpArg& arg, u8 compare) +{ + WriteSSEOp(0x66, sseCMP, regOp, arg, 1); + Write8(compare); +} +void XEmitter::ANDPS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x00, sseAND, regOp, arg); +} +void XEmitter::ANDPD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x66, sseAND, regOp, arg); +} +void XEmitter::ANDNPS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x00, sseANDN, regOp, arg); +} +void XEmitter::ANDNPD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x66, sseANDN, regOp, arg); +} +void XEmitter::ORPS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x00, sseOR, regOp, arg); +} +void XEmitter::ORPD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x66, sseOR, regOp, arg); +} +void XEmitter::XORPS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x00, sseXOR, regOp, arg); +} +void XEmitter::XORPD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x66, sseXOR, regOp, arg); +} +void XEmitter::MULPS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x00, sseMUL, regOp, arg); +} +void XEmitter::MULPD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x66, sseMUL, regOp, arg); +} +void XEmitter::DIVPS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x00, sseDIV, regOp, arg); +} +void XEmitter::DIVPD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x66, sseDIV, regOp, arg); +} +void XEmitter::MINPS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x00, sseMIN, regOp, arg); +} +void XEmitter::MINPD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x66, sseMIN, regOp, arg); +} +void XEmitter::MAXPS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x00, sseMAX, regOp, arg); +} +void XEmitter::MAXPD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x66, sseMAX, regOp, arg); +} +void XEmitter::SQRTPS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x00, sseSQRT, regOp, arg); +} +void XEmitter::SQRTPD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x66, sseSQRT, regOp, arg); +} +void XEmitter::RCPPS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x00, sseRCP, regOp, arg); +} +void XEmitter::RSQRTPS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x00, sseRSQRT, regOp, arg); +} +void XEmitter::SHUFPS(X64Reg regOp, const OpArg& arg, u8 shuffle) +{ + WriteSSEOp(0x00, sseSHUF, regOp, arg, 1); + Write8(shuffle); +} +void XEmitter::SHUFPD(X64Reg regOp, const OpArg& arg, u8 shuffle) +{ + WriteSSEOp(0x66, sseSHUF, regOp, arg, 1); + Write8(shuffle); +} + +void XEmitter::COMISS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x00, sseCOMIS, regOp, arg); +} // weird that these should be packed +void XEmitter::COMISD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x66, sseCOMIS, regOp, arg); +} // ordered +void XEmitter::UCOMISS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x00, sseUCOMIS, regOp, arg); +} // unordered +void XEmitter::UCOMISD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x66, sseUCOMIS, regOp, arg); +} + +void XEmitter::MOVAPS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x00, sseMOVAPfromRM, regOp, arg); +} +void XEmitter::MOVAPD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x66, sseMOVAPfromRM, regOp, arg); +} +void XEmitter::MOVAPS(const OpArg& arg, X64Reg regOp) +{ + WriteSSEOp(0x00, sseMOVAPtoRM, regOp, arg); +} +void XEmitter::MOVAPD(const OpArg& arg, X64Reg regOp) +{ + WriteSSEOp(0x66, sseMOVAPtoRM, regOp, arg); +} + +void XEmitter::MOVUPS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x00, sseMOVUPfromRM, regOp, arg); +} +void XEmitter::MOVUPD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x66, sseMOVUPfromRM, regOp, arg); +} +void XEmitter::MOVUPS(const OpArg& arg, X64Reg regOp) +{ + WriteSSEOp(0x00, sseMOVUPtoRM, regOp, arg); +} +void XEmitter::MOVUPD(const OpArg& arg, X64Reg regOp) +{ + WriteSSEOp(0x66, sseMOVUPtoRM, regOp, arg); +} + +void XEmitter::MOVDQA(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x66, sseMOVDQfromRM, regOp, arg); +} +void XEmitter::MOVDQA(const OpArg& arg, X64Reg regOp) +{ + WriteSSEOp(0x66, sseMOVDQtoRM, regOp, arg); +} +void XEmitter::MOVDQU(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF3, sseMOVDQfromRM, regOp, arg); +} +void XEmitter::MOVDQU(const OpArg& arg, X64Reg regOp) +{ + WriteSSEOp(0xF3, sseMOVDQtoRM, regOp, arg); +} + +void XEmitter::MOVSS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF3, sseMOVUPfromRM, regOp, arg); +} +void XEmitter::MOVSD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF2, sseMOVUPfromRM, regOp, arg); +} +void XEmitter::MOVSS(const OpArg& arg, X64Reg regOp) +{ + WriteSSEOp(0xF3, sseMOVUPtoRM, regOp, arg); +} +void XEmitter::MOVSD(const OpArg& arg, X64Reg regOp) +{ + WriteSSEOp(0xF2, sseMOVUPtoRM, regOp, arg); +} + +void XEmitter::MOVLPS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x00, sseMOVLPfromRM, regOp, arg); +} +void XEmitter::MOVLPD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x66, sseMOVLPfromRM, regOp, arg); +} +void XEmitter::MOVLPS(const OpArg& arg, X64Reg regOp) +{ + WriteSSEOp(0x00, sseMOVLPtoRM, regOp, arg); +} +void XEmitter::MOVLPD(const OpArg& arg, X64Reg regOp) +{ + WriteSSEOp(0x66, sseMOVLPtoRM, regOp, arg); +} + +void XEmitter::MOVHPS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x00, sseMOVHPfromRM, regOp, arg); +} +void XEmitter::MOVHPD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x66, sseMOVHPfromRM, regOp, arg); +} +void XEmitter::MOVHPS(const OpArg& arg, X64Reg regOp) +{ + WriteSSEOp(0x00, sseMOVHPtoRM, regOp, arg); +} +void XEmitter::MOVHPD(const OpArg& arg, X64Reg regOp) +{ + WriteSSEOp(0x66, sseMOVHPtoRM, regOp, arg); +} + +void XEmitter::MOVHLPS(X64Reg regOp1, X64Reg regOp2) +{ + WriteSSEOp(0x00, sseMOVHLPS, regOp1, R(regOp2)); +} +void XEmitter::MOVLHPS(X64Reg regOp1, X64Reg regOp2) +{ + WriteSSEOp(0x00, sseMOVLHPS, regOp1, R(regOp2)); +} + +void XEmitter::CVTPS2PD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x00, 0x5A, regOp, arg); +} +void XEmitter::CVTPD2PS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x66, 0x5A, regOp, arg); +} + +void XEmitter::CVTSD2SS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF2, 0x5A, regOp, arg); +} +void XEmitter::CVTSS2SD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF3, 0x5A, regOp, arg); +} +void XEmitter::CVTSD2SI(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF2, 0x2D, regOp, arg); +} +void XEmitter::CVTSS2SI(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF3, 0x2D, regOp, arg); +} +void XEmitter::CVTSI2SD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF2, 0x2A, regOp, arg); +} +void XEmitter::CVTSI2SS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF3, 0x2A, regOp, arg); +} + +void XEmitter::CVTDQ2PD(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF3, 0xE6, regOp, arg); +} +void XEmitter::CVTDQ2PS(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x00, 0x5B, regOp, arg); +} +void XEmitter::CVTPD2DQ(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF2, 0xE6, regOp, arg); +} +void XEmitter::CVTPS2DQ(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x66, 0x5B, regOp, arg); +} + +void XEmitter::CVTTSD2SI(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF2, 0x2C, regOp, arg); +} +void XEmitter::CVTTSS2SI(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF3, 0x2C, regOp, arg); +} +void XEmitter::CVTTPS2DQ(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0xF3, 0x5B, regOp, arg); +} +void XEmitter::CVTTPD2DQ(X64Reg regOp, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xE6, regOp, arg); +} + +void XEmitter::MASKMOVDQU(X64Reg dest, X64Reg src) +{ + WriteSSEOp(0x66, sseMASKMOVDQU, dest, R(src)); +} + +void XEmitter::MOVMSKPS(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x00, 0x50, dest, arg); +} +void XEmitter::MOVMSKPD(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0x50, dest, arg); +} + +void XEmitter::LDDQU(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0xF2, sseLDDQU, dest, arg); +} // For integer data only + +void XEmitter::UNPCKLPS(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x00, 0x14, dest, arg); +} +void XEmitter::UNPCKHPS(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x00, 0x15, dest, arg); +} +void XEmitter::UNPCKLPD(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0x14, dest, arg); +} +void XEmitter::UNPCKHPD(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0x15, dest, arg); +} + +// Pretty much every x86 CPU nowadays supports SSE3, +// but the SSE2 fallbacks are easy. +void XEmitter::MOVSLDUP(X64Reg regOp, const OpArg& arg) +{ + if (cpu_info.bSSE3) + { + WriteSSEOp(0xF3, 0x12, regOp, arg); + } + else + { + if (!arg.IsSimpleReg(regOp)) + MOVAPD(regOp, arg); + UNPCKLPS(regOp, R(regOp)); + } +} +void XEmitter::MOVSHDUP(X64Reg regOp, const OpArg& arg) +{ + if (cpu_info.bSSE3) + { + WriteSSEOp(0xF3, 0x16, regOp, arg); + } + else + { + if (!arg.IsSimpleReg(regOp)) + MOVAPD(regOp, arg); + UNPCKHPS(regOp, R(regOp)); + } +} +void XEmitter::MOVDDUP(X64Reg regOp, const OpArg& arg) +{ + if (cpu_info.bSSE3) + { + WriteSSEOp(0xF2, 0x12, regOp, arg); + } + else + { + if (!arg.IsSimpleReg(regOp)) + MOVSD(regOp, arg); + UNPCKLPD(regOp, R(regOp)); + } +} + +// There are a few more left + +// Also some integer instructions are missing +void XEmitter::PACKSSDW(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0x6B, dest, arg); +} +void XEmitter::PACKSSWB(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0x63, dest, arg); +} +void XEmitter::PACKUSWB(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0x67, dest, arg); +} + +void XEmitter::PUNPCKLBW(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0x60, dest, arg); +} +void XEmitter::PUNPCKLWD(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0x61, dest, arg); +} +void XEmitter::PUNPCKLDQ(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0x62, dest, arg); +} +void XEmitter::PUNPCKLQDQ(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0x6C, dest, arg); +} + +void XEmitter::PSRLW(X64Reg reg, int shift) +{ + WriteSSEOp(0x66, 0x71, (X64Reg)2, R(reg)); + Write8(shift); +} + +void XEmitter::PSRLD(X64Reg reg, int shift) +{ + WriteSSEOp(0x66, 0x72, (X64Reg)2, R(reg)); + Write8(shift); +} + +void XEmitter::PSRLQ(X64Reg reg, int shift) +{ + WriteSSEOp(0x66, 0x73, (X64Reg)2, R(reg)); + Write8(shift); +} + +void XEmitter::PSRLQ(X64Reg reg, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xd3, reg, arg); +} + +void XEmitter::PSRLDQ(X64Reg reg, int shift) +{ + WriteSSEOp(0x66, 0x73, (X64Reg)3, R(reg)); + Write8(shift); +} + +void XEmitter::PSLLW(X64Reg reg, int shift) +{ + WriteSSEOp(0x66, 0x71, (X64Reg)6, R(reg)); + Write8(shift); +} + +void XEmitter::PSLLD(X64Reg reg, int shift) +{ + WriteSSEOp(0x66, 0x72, (X64Reg)6, R(reg)); + Write8(shift); +} + +void XEmitter::PSLLQ(X64Reg reg, int shift) +{ + WriteSSEOp(0x66, 0x73, (X64Reg)6, R(reg)); + Write8(shift); +} + +void XEmitter::PSLLDQ(X64Reg reg, int shift) +{ + WriteSSEOp(0x66, 0x73, (X64Reg)7, R(reg)); + Write8(shift); +} + +// WARNING not REX compatible +void XEmitter::PSRAW(X64Reg reg, int shift) +{ + if (reg > 7) + PanicAlert("The PSRAW-emitter does not support regs above 7"); + Write8(0x66); + Write8(0x0f); + Write8(0x71); + Write8(0xE0 | reg); + Write8(shift); +} + +// WARNING not REX compatible +void XEmitter::PSRAD(X64Reg reg, int shift) +{ + if (reg > 7) + PanicAlert("The PSRAD-emitter does not support regs above 7"); + Write8(0x66); + Write8(0x0f); + Write8(0x72); + Write8(0xE0 | reg); + Write8(shift); +} + +void XEmitter::WriteSSSE3Op(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes) +{ + if (!cpu_info.bSSSE3) + PanicAlert("Trying to use SSSE3 on a system that doesn't support it. Bad programmer."); + WriteSSEOp(opPrefix, op, regOp, arg, extrabytes); +} + +void XEmitter::WriteSSE41Op(u8 opPrefix, u16 op, X64Reg regOp, const OpArg& arg, int extrabytes) +{ + if (!cpu_info.bSSE4_1) + PanicAlert("Trying to use SSE4.1 on a system that doesn't support it. Bad programmer."); + WriteSSEOp(opPrefix, op, regOp, arg, extrabytes); +} + +void XEmitter::PSHUFB(X64Reg dest, const OpArg& arg) +{ + WriteSSSE3Op(0x66, 0x3800, dest, arg); +} +void XEmitter::PTEST(X64Reg dest, const OpArg& arg) +{ + WriteSSE41Op(0x66, 0x3817, dest, arg); +} +void XEmitter::PACKUSDW(X64Reg dest, const OpArg& arg) +{ + WriteSSE41Op(0x66, 0x382b, dest, arg); +} + +void XEmitter::PMOVSXBW(X64Reg dest, const OpArg& arg) +{ + WriteSSE41Op(0x66, 0x3820, dest, arg); +} +void XEmitter::PMOVSXBD(X64Reg dest, const OpArg& arg) +{ + WriteSSE41Op(0x66, 0x3821, dest, arg); +} +void XEmitter::PMOVSXBQ(X64Reg dest, const OpArg& arg) +{ + WriteSSE41Op(0x66, 0x3822, dest, arg); +} +void XEmitter::PMOVSXWD(X64Reg dest, const OpArg& arg) +{ + WriteSSE41Op(0x66, 0x3823, dest, arg); +} +void XEmitter::PMOVSXWQ(X64Reg dest, const OpArg& arg) +{ + WriteSSE41Op(0x66, 0x3824, dest, arg); +} +void XEmitter::PMOVSXDQ(X64Reg dest, const OpArg& arg) +{ + WriteSSE41Op(0x66, 0x3825, dest, arg); +} +void XEmitter::PMOVZXBW(X64Reg dest, const OpArg& arg) +{ + WriteSSE41Op(0x66, 0x3830, dest, arg); +} +void XEmitter::PMOVZXBD(X64Reg dest, const OpArg& arg) +{ + WriteSSE41Op(0x66, 0x3831, dest, arg); +} +void XEmitter::PMOVZXBQ(X64Reg dest, const OpArg& arg) +{ + WriteSSE41Op(0x66, 0x3832, dest, arg); +} +void XEmitter::PMOVZXWD(X64Reg dest, const OpArg& arg) +{ + WriteSSE41Op(0x66, 0x3833, dest, arg); +} +void XEmitter::PMOVZXWQ(X64Reg dest, const OpArg& arg) +{ + WriteSSE41Op(0x66, 0x3834, dest, arg); +} +void XEmitter::PMOVZXDQ(X64Reg dest, const OpArg& arg) +{ + WriteSSE41Op(0x66, 0x3835, dest, arg); +} + +void XEmitter::PBLENDVB(X64Reg dest, const OpArg& arg) +{ + WriteSSE41Op(0x66, 0x3810, dest, arg); +} +void XEmitter::BLENDVPS(X64Reg dest, const OpArg& arg) +{ + WriteSSE41Op(0x66, 0x3814, dest, arg); +} +void XEmitter::BLENDVPD(X64Reg dest, const OpArg& arg) +{ + WriteSSE41Op(0x66, 0x3815, dest, arg); +} +void XEmitter::BLENDPS(X64Reg dest, const OpArg& arg, u8 blend) +{ + WriteSSE41Op(0x66, 0x3A0C, dest, arg, 1); + Write8(blend); +} +void XEmitter::BLENDPD(X64Reg dest, const OpArg& arg, u8 blend) +{ + WriteSSE41Op(0x66, 0x3A0D, dest, arg, 1); + Write8(blend); +} + +void XEmitter::PAND(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xDB, dest, arg); +} +void XEmitter::PANDN(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xDF, dest, arg); +} +void XEmitter::PXOR(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xEF, dest, arg); +} +void XEmitter::POR(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xEB, dest, arg); +} + +void XEmitter::PADDB(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xFC, dest, arg); +} +void XEmitter::PADDW(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xFD, dest, arg); +} +void XEmitter::PADDD(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xFE, dest, arg); +} +void XEmitter::PADDQ(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xD4, dest, arg); +} + +void XEmitter::PADDSB(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xEC, dest, arg); +} +void XEmitter::PADDSW(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xED, dest, arg); +} +void XEmitter::PADDUSB(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xDC, dest, arg); +} +void XEmitter::PADDUSW(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xDD, dest, arg); +} + +void XEmitter::PSUBB(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xF8, dest, arg); +} +void XEmitter::PSUBW(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xF9, dest, arg); +} +void XEmitter::PSUBD(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xFA, dest, arg); +} +void XEmitter::PSUBQ(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xFB, dest, arg); +} + +void XEmitter::PSUBSB(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xE8, dest, arg); +} +void XEmitter::PSUBSW(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xE9, dest, arg); +} +void XEmitter::PSUBUSB(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xD8, dest, arg); +} +void XEmitter::PSUBUSW(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xD9, dest, arg); +} + +void XEmitter::PAVGB(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xE0, dest, arg); +} +void XEmitter::PAVGW(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xE3, dest, arg); +} + +void XEmitter::PCMPEQB(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0x74, dest, arg); +} +void XEmitter::PCMPEQW(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0x75, dest, arg); +} +void XEmitter::PCMPEQD(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0x76, dest, arg); +} + +void XEmitter::PCMPGTB(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0x64, dest, arg); +} +void XEmitter::PCMPGTW(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0x65, dest, arg); +} +void XEmitter::PCMPGTD(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0x66, dest, arg); +} + +void XEmitter::PEXTRW(X64Reg dest, const OpArg& arg, u8 subreg) +{ + WriteSSEOp(0x66, 0xC5, dest, arg); + Write8(subreg); +} +void XEmitter::PINSRW(X64Reg dest, const OpArg& arg, u8 subreg) +{ + WriteSSEOp(0x66, 0xC4, dest, arg); + Write8(subreg); +} +void XEmitter::PINSRD(X64Reg dest, const OpArg& arg, u8 subreg) +{ + WriteSSE41Op(0x66, 0x3A22, dest, arg); + Write8(subreg); +} + +void XEmitter::PMADDWD(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xF5, dest, arg); +} +void XEmitter::PSADBW(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xF6, dest, arg); +} + +void XEmitter::PMAXSW(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xEE, dest, arg); +} +void XEmitter::PMAXUB(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xDE, dest, arg); +} +void XEmitter::PMINSW(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xEA, dest, arg); +} +void XEmitter::PMINUB(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xDA, dest, arg); +} + +void XEmitter::PMOVMSKB(X64Reg dest, const OpArg& arg) +{ + WriteSSEOp(0x66, 0xD7, dest, arg); +} +void XEmitter::PSHUFD(X64Reg regOp, const OpArg& arg, u8 shuffle) +{ + WriteSSEOp(0x66, 0x70, regOp, arg, 1); + Write8(shuffle); +} +void XEmitter::PSHUFLW(X64Reg regOp, const OpArg& arg, u8 shuffle) +{ + WriteSSEOp(0xF2, 0x70, regOp, arg, 1); + Write8(shuffle); +} +void XEmitter::PSHUFHW(X64Reg regOp, const OpArg& arg, u8 shuffle) +{ + WriteSSEOp(0xF3, 0x70, regOp, arg, 1); + Write8(shuffle); +} + +// VEX +void XEmitter::VADDSS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0xF3, sseADD, regOp1, regOp2, arg); +} +void XEmitter::VSUBSS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0xF3, sseSUB, regOp1, regOp2, arg); +} +void XEmitter::VMULSS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0xF3, sseMUL, regOp1, regOp2, arg); +} +void XEmitter::VDIVSS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0xF3, sseDIV, regOp1, regOp2, arg); +} +void XEmitter::VADDPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x00, sseADD, regOp1, regOp2, arg); +} +void XEmitter::VSUBPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x00, sseSUB, regOp1, regOp2, arg); +} +void XEmitter::VMULPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x00, sseMUL, regOp1, regOp2, arg); +} +void XEmitter::VDIVPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x00, sseDIV, regOp1, regOp2, arg); +} +void XEmitter::VADDSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0xF2, sseADD, regOp1, regOp2, arg); +} +void XEmitter::VSUBSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0xF2, sseSUB, regOp1, regOp2, arg); +} +void XEmitter::VMULSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0xF2, sseMUL, regOp1, regOp2, arg); +} +void XEmitter::VDIVSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0xF2, sseDIV, regOp1, regOp2, arg); +} +void XEmitter::VADDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x66, sseADD, regOp1, regOp2, arg); +} +void XEmitter::VSUBPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x66, sseSUB, regOp1, regOp2, arg); +} +void XEmitter::VMULPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x66, sseMUL, regOp1, regOp2, arg); +} +void XEmitter::VDIVPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x66, sseDIV, regOp1, regOp2, arg); +} +void XEmitter::VSQRTSD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0xF2, sseSQRT, regOp1, regOp2, arg); +} +void XEmitter::VCMPPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 compare) +{ + WriteAVXOp(0x66, sseCMP, regOp1, regOp2, arg, 0, 1); + Write8(compare); +} +void XEmitter::VSHUFPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 shuffle) +{ + WriteAVXOp(0x00, sseSHUF, regOp1, regOp2, arg, 0, 1); + Write8(shuffle); +} +void XEmitter::VSHUFPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 shuffle) +{ + WriteAVXOp(0x66, sseSHUF, regOp1, regOp2, arg, 0, 1); + Write8(shuffle); +} +void XEmitter::VUNPCKLPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x00, 0x14, regOp1, regOp2, arg); +} +void XEmitter::VUNPCKLPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x66, 0x14, regOp1, regOp2, arg); +} +void XEmitter::VUNPCKHPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x66, 0x15, regOp1, regOp2, arg); +} +void XEmitter::VBLENDVPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, X64Reg regOp3) +{ + WriteAVXOp4(0x66, 0x3A4B, regOp1, regOp2, arg, regOp3); +} +void XEmitter::VBLENDPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 blend) +{ + WriteAVXOp(0x66, 0x3A0C, regOp1, regOp2, arg, 0, 1); + Write8(blend); +} +void XEmitter::VBLENDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg, u8 blend) +{ + WriteAVXOp(0x66, 0x3A0D, regOp1, regOp2, arg, 0, 1); + Write8(blend); +} + +void XEmitter::VANDPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x00, sseAND, regOp1, regOp2, arg); +} +void XEmitter::VANDPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x66, sseAND, regOp1, regOp2, arg); +} +void XEmitter::VANDNPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x00, sseANDN, regOp1, regOp2, arg); +} +void XEmitter::VANDNPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x66, sseANDN, regOp1, regOp2, arg); +} +void XEmitter::VORPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x00, sseOR, regOp1, regOp2, arg); +} +void XEmitter::VORPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x66, sseOR, regOp1, regOp2, arg); +} +void XEmitter::VXORPS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x00, sseXOR, regOp1, regOp2, arg); +} +void XEmitter::VXORPD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x66, sseXOR, regOp1, regOp2, arg); +} + +void XEmitter::VPAND(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x66, 0xDB, regOp1, regOp2, arg); +} +void XEmitter::VPANDN(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x66, 0xDF, regOp1, regOp2, arg); +} +void XEmitter::VPOR(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x66, 0xEB, regOp1, regOp2, arg); +} +void XEmitter::VPXOR(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteAVXOp(0x66, 0xEF, regOp1, regOp2, arg); +} + +void XEmitter::VFMADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0x98, regOp1, regOp2, arg); +} +void XEmitter::VFMADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xA8, regOp1, regOp2, arg); +} +void XEmitter::VFMADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xB8, regOp1, regOp2, arg); +} +void XEmitter::VFMADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0x98, regOp1, regOp2, arg, 1); +} +void XEmitter::VFMADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xA8, regOp1, regOp2, arg, 1); +} +void XEmitter::VFMADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xB8, regOp1, regOp2, arg, 1); +} +void XEmitter::VFMADD132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0x99, regOp1, regOp2, arg); +} +void XEmitter::VFMADD213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xA9, regOp1, regOp2, arg); +} +void XEmitter::VFMADD231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xB9, regOp1, regOp2, arg); +} +void XEmitter::VFMADD132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0x99, regOp1, regOp2, arg, 1); +} +void XEmitter::VFMADD213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xA9, regOp1, regOp2, arg, 1); +} +void XEmitter::VFMADD231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xB9, regOp1, regOp2, arg, 1); +} +void XEmitter::VFMSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0x9A, regOp1, regOp2, arg); +} +void XEmitter::VFMSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xAA, regOp1, regOp2, arg); +} +void XEmitter::VFMSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xBA, regOp1, regOp2, arg); +} +void XEmitter::VFMSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0x9A, regOp1, regOp2, arg, 1); +} +void XEmitter::VFMSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xAA, regOp1, regOp2, arg, 1); +} +void XEmitter::VFMSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xBA, regOp1, regOp2, arg, 1); +} +void XEmitter::VFMSUB132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0x9B, regOp1, regOp2, arg); +} +void XEmitter::VFMSUB213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xAB, regOp1, regOp2, arg); +} +void XEmitter::VFMSUB231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xBB, regOp1, regOp2, arg); +} +void XEmitter::VFMSUB132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0x9B, regOp1, regOp2, arg, 1); +} +void XEmitter::VFMSUB213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xAB, regOp1, regOp2, arg, 1); +} +void XEmitter::VFMSUB231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xBB, regOp1, regOp2, arg, 1); +} +void XEmitter::VFNMADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0x9C, regOp1, regOp2, arg); +} +void XEmitter::VFNMADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xAC, regOp1, regOp2, arg); +} +void XEmitter::VFNMADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xBC, regOp1, regOp2, arg); +} +void XEmitter::VFNMADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0x9C, regOp1, regOp2, arg, 1); +} +void XEmitter::VFNMADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xAC, regOp1, regOp2, arg, 1); +} +void XEmitter::VFNMADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xBC, regOp1, regOp2, arg, 1); +} +void XEmitter::VFNMADD132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0x9D, regOp1, regOp2, arg); +} +void XEmitter::VFNMADD213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xAD, regOp1, regOp2, arg); +} +void XEmitter::VFNMADD231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xBD, regOp1, regOp2, arg); +} +void XEmitter::VFNMADD132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0x9D, regOp1, regOp2, arg, 1); +} +void XEmitter::VFNMADD213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xAD, regOp1, regOp2, arg, 1); +} +void XEmitter::VFNMADD231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xBD, regOp1, regOp2, arg, 1); +} +void XEmitter::VFNMSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0x9E, regOp1, regOp2, arg); +} +void XEmitter::VFNMSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xAE, regOp1, regOp2, arg); +} +void XEmitter::VFNMSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xBE, regOp1, regOp2, arg); +} +void XEmitter::VFNMSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0x9E, regOp1, regOp2, arg, 1); +} +void XEmitter::VFNMSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xAE, regOp1, regOp2, arg, 1); +} +void XEmitter::VFNMSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xBE, regOp1, regOp2, arg, 1); +} +void XEmitter::VFNMSUB132SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0x9F, regOp1, regOp2, arg); +} +void XEmitter::VFNMSUB213SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xAF, regOp1, regOp2, arg); +} +void XEmitter::VFNMSUB231SS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xBF, regOp1, regOp2, arg); +} +void XEmitter::VFNMSUB132SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0x9F, regOp1, regOp2, arg, 1); +} +void XEmitter::VFNMSUB213SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xAF, regOp1, regOp2, arg, 1); +} +void XEmitter::VFNMSUB231SD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xBF, regOp1, regOp2, arg, 1); +} +void XEmitter::VFMADDSUB132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0x96, regOp1, regOp2, arg); +} +void XEmitter::VFMADDSUB213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xA6, regOp1, regOp2, arg); +} +void XEmitter::VFMADDSUB231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xB6, regOp1, regOp2, arg); +} +void XEmitter::VFMADDSUB132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0x96, regOp1, regOp2, arg, 1); +} +void XEmitter::VFMADDSUB213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xA6, regOp1, regOp2, arg, 1); +} +void XEmitter::VFMADDSUB231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xB6, regOp1, regOp2, arg, 1); +} +void XEmitter::VFMSUBADD132PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0x97, regOp1, regOp2, arg); +} +void XEmitter::VFMSUBADD213PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xA7, regOp1, regOp2, arg); +} +void XEmitter::VFMSUBADD231PS(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xB7, regOp1, regOp2, arg); +} +void XEmitter::VFMSUBADD132PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0x97, regOp1, regOp2, arg, 1); +} +void XEmitter::VFMSUBADD213PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xA7, regOp1, regOp2, arg, 1); +} +void XEmitter::VFMSUBADD231PD(X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteFMA3Op(0xB7, regOp1, regOp2, arg, 1); +} + +#define FMA4(name, op) \ + void XEmitter::name(X64Reg dest, X64Reg regOp1, X64Reg regOp2, const OpArg& arg) \ + { \ + WriteFMA4Op(op, dest, regOp1, regOp2, arg, 1); \ + } \ + void XEmitter::name(X64Reg dest, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) \ + { \ + WriteFMA4Op(op, dest, regOp1, regOp2, arg, 0); \ + } + +FMA4(VFMADDSUBPS, 0x5C) +FMA4(VFMADDSUBPD, 0x5D) +FMA4(VFMSUBADDPS, 0x5E) +FMA4(VFMSUBADDPD, 0x5F) +FMA4(VFMADDPS, 0x68) +FMA4(VFMADDPD, 0x69) +FMA4(VFMADDSS, 0x6A) +FMA4(VFMADDSD, 0x6B) +FMA4(VFMSUBPS, 0x6C) +FMA4(VFMSUBPD, 0x6D) +FMA4(VFMSUBSS, 0x6E) +FMA4(VFMSUBSD, 0x6F) +FMA4(VFNMADDPS, 0x78) +FMA4(VFNMADDPD, 0x79) +FMA4(VFNMADDSS, 0x7A) +FMA4(VFNMADDSD, 0x7B) +FMA4(VFNMSUBPS, 0x7C) +FMA4(VFNMSUBPD, 0x7D) +FMA4(VFNMSUBSS, 0x7E) +FMA4(VFNMSUBSD, 0x7F) +#undef FMA4 + +void XEmitter::SARX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) +{ + WriteBMI2Op(bits, 0xF3, 0x38F7, regOp1, regOp2, arg); +} +void XEmitter::SHLX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) +{ + WriteBMI2Op(bits, 0x66, 0x38F7, regOp1, regOp2, arg); +} +void XEmitter::SHRX(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) +{ + WriteBMI2Op(bits, 0xF2, 0x38F7, regOp1, regOp2, arg); +} +void XEmitter::RORX(int bits, X64Reg regOp, const OpArg& arg, u8 rotate) +{ + WriteBMI2Op(bits, 0xF2, 0x3AF0, regOp, INVALID_REG, arg, 1); + Write8(rotate); +} +void XEmitter::PEXT(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteBMI2Op(bits, 0xF3, 0x38F5, regOp1, regOp2, arg); +} +void XEmitter::PDEP(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteBMI2Op(bits, 0xF2, 0x38F5, regOp1, regOp2, arg); +} +void XEmitter::MULX(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteBMI2Op(bits, 0xF2, 0x38F6, regOp2, regOp1, arg); +} +void XEmitter::BZHI(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) +{ + CheckFlags(); + WriteBMI2Op(bits, 0x00, 0x38F5, regOp1, regOp2, arg); +} +void XEmitter::BLSR(int bits, X64Reg regOp, const OpArg& arg) +{ + WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x1, regOp, arg); +} +void XEmitter::BLSMSK(int bits, X64Reg regOp, const OpArg& arg) +{ + WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x2, regOp, arg); +} +void XEmitter::BLSI(int bits, X64Reg regOp, const OpArg& arg) +{ + WriteBMI1Op(bits, 0x00, 0x38F3, (X64Reg)0x3, regOp, arg); +} +void XEmitter::BEXTR(int bits, X64Reg regOp1, const OpArg& arg, X64Reg regOp2) +{ + WriteBMI1Op(bits, 0x00, 0x38F7, regOp1, regOp2, arg); +} +void XEmitter::ANDN(int bits, X64Reg regOp1, X64Reg regOp2, const OpArg& arg) +{ + WriteBMI1Op(bits, 0x00, 0x38F2, regOp1, regOp2, arg); +} + +// Prefixes + +void XEmitter::LOCK() +{ + Write8(0xF0); +} +void XEmitter::REP() +{ + Write8(0xF3); +} +void XEmitter::REPNE() +{ + Write8(0xF2); +} +void XEmitter::FSOverride() +{ + Write8(0x64); +} +void XEmitter::GSOverride() +{ + Write8(0x65); +} + +void XEmitter::FWAIT() +{ + Write8(0x9B); +} + +// TODO: make this more generic +void XEmitter::WriteFloatLoadStore(int bits, FloatOp op, FloatOp op_80b, const OpArg& arg) +{ + int mf = 0; + ASSERT_MSG(DYNA_REC, !(bits == 80 && op_80b == FloatOp::Invalid), + "WriteFloatLoadStore: 80 bits not supported for this instruction"); + switch (bits) + { + case 32: + mf = 0; + break; + case 64: + mf = 4; + break; + case 80: + mf = 2; + break; + default: + ASSERT_MSG(DYNA_REC, 0, "WriteFloatLoadStore: invalid bits (should be 32/64/80)"); + } + Write8(0xd9 | mf); + // x87 instructions use the reg field of the ModR/M byte as opcode: + if (bits == 80) + op = op_80b; + arg.WriteRest(this, 0, static_cast<X64Reg>(op)); +} + +void XEmitter::FLD(int bits, const OpArg& src) +{ + WriteFloatLoadStore(bits, FloatOp::LD, FloatOp::LD80, src); +} +void XEmitter::FST(int bits, const OpArg& dest) +{ + WriteFloatLoadStore(bits, FloatOp::ST, FloatOp::Invalid, dest); +} +void XEmitter::FSTP(int bits, const OpArg& dest) +{ + WriteFloatLoadStore(bits, FloatOp::STP, FloatOp::STP80, dest); +} +void XEmitter::FNSTSW_AX() +{ + Write8(0xDF); + Write8(0xE0); +} + +void XEmitter::RDTSC() +{ + Write8(0x0F); + Write8(0x31); +} +} |